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Out-of-Sample Equity Premium Prediction: The Role

of Option-Implied Constraints

ABSTRACT

We propose a new constrained equity premium forecasting approach that incorporates two

option-implied lower bounds for the conditional market risk premium from Martin (2017) and

Chabi-Yo and Loudis (2020), respectively. Our constrained approach delivers considerable

out-of-sample gains in both statistical and economic criteria relative to the unconstrained

predictive regression and the forecast combination method. Even stronger performance is

uncovered when the upper bound on the equity premium from Chabi-Yo and Loudis (2020)

is incorporated. Our approach also outperforms the prevailing non-negativity constraint,

especially at longer forecast horizons. We provide two explanations for the superiority of

our method: i) constrained forecasts combine the information provided by conventional pre-

dictors and the forward-looking information about the term structure of expected holding

period returns implied by option prices and ii) option-implied bounds sharpen unconstrained

forecasts and significantly reduce forecast variance at the same time.

JEL classification : G11; G12; G13; G17

Keywords: Out-of-sample predictability, forecast constraints, option-implied

bounds, term structure, higher-order moments



1 Introduction

The time-varying equity premium is an important ingredient in many areas of finance,

including asset pricing, portfolio management, and capital budgeting. The literature has

provided convincing evidence of the in-sample predictability of the equity premium and i-

dentified a large list of predictors that can track the equity premium’s time variation.1 As

forcefully criticized by Welch and Goyal (2008), however, the out-of-sample (OOS) perfor-

mance of many well-recognized predictors is quite fragile, and they rarely outperform the

historical mean benchmark in a consistent manner. Thus, how to improve the accuracy

and empirical reliability of OOS predictions of equity premium remains a challenging but

intriguing question for both academics and practitioners.

Perhaps, the most straightforward way is to explore more powerful predictors. Recent

studies have discovered many new predictors with remarkable OOS performance.2 Nonethe-

less, a growing body of literature recognizes that unreliable OOS predictability may not

arise from these fragile predictors alone. First, the data-generating process of equity premi-

um is “highly complex and constantly evolving” (Rapach, Strauss, and Zhou, 2010, p. 845),

resulting in model uncertainty or structural breaks (Lettau and Van Nieuwerburgh, 2008;

Pesaran and Timmermann, 2002). Second, the information set of market participants that

determines the equity premium could be much vaster than that used by researchers (Ludvig-

sona and Ng, 2007). The preceding problems are exacerbated by the conditional mean of the

market return often adopting restricted parametric forms (Harvey, 2001). The interaction

of these problems gives rise to model misspecification and hence leads to the unstable OOS

performance of standard predictive regressions.

Emerging methods in recent studies tackle some of these issues by condensing infor-

mation from a multitude of predictors and by allowing for more flexible specifications of

the equity premium.3 A parallel literature, on the other hand, emphasizes that imposing

1Prominent predictors include the nominal short rate (Campbell, 1987), stock market volatility (French,
Schwert, and Stambaugh, 1987), the dividend–price ratio (Campbell and Shiller, 1988), dividend yield (Fama
and French, 1988), term and default spreads (Fama and French, 1989), and net aggregate equity issuance
(Boudoukh, Michaely, Richardson, and Roberts, 2007), to name a few. See Rapach and Zhou (2013) for
further references.

2Some new predictors found in the literature include the variance risk premium (Bollerslev, Tauchen,
and Zhou, 2009), the aggregate short interest (Rapach, Ringgenberg, and Zhou, 2016), an aligned investor
sentiment index (Huang, Jiang, Tu, and Zhou, 2014), and technical indicators (Neely, Rapach, Tu, and Zhou,
2014).

3Recent contributions include the three-pass regression filter (Kelly and Pruitt, 2015), principal compo-
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statistical and economic constraints on otherwise standard predictive regressions substan-

tially improves OOS forecasting performance. For instance, Rapach, Strauss, and Zhou

(2013) apply shrinkage estimation techniques to obtain more parsimonious predictive mod-

els. Alternatively, some researchers impose economically motivated restrictions to prevent

the regression coefficient estimates and corresponding forecasts from contradicting rational

theory. In particular, Campbell and Thompson (2008, hereafter CT) have pioneered the

idea of imposing the non-negativity constraint on equity premium forecasts, which has been

widely adopted in subsequent studies (Li and Tsiakas, 2017; Pan, Pettenuzzo, and Wang,

2020; Pettenuzzo, Timmermann, and Valkanov, 2014).

Although the zero lower bound approach is easy to implement, it has two drawbacks.

First, given the countercyclical nature of the equity premium (Fama and French, 1989;

Henkel, Martin, and Nardari, 2011), the zero bound is uninformative, since it incorporates

no conditional information. Second, the expected holding period return on the market grows

over the horizon, which makes zero an overly slack bound for the long-term equity premium.

Fortunately, two recent studies, by Martin (2017) and Chabi-Yo and Loudis (2020) (CYL

hereafter), explore the rich information in the equity index options and derive two tight

lower bounds on the conditional market risk premium. The former is fully characterized by

conditional risk-neutral market variance, while the latter also considers compensation for

exposure to higher-order risk-neutral moment risk. Importantly, these two lower bounds can

be calculated in real time, using cross sections of the index option prices in a model-free

manner, and are available for various maturities. Compared to zero, these bounds exhibit

salient countercyclical dynamics and the shape of the bounds’ term structure varies over

time, suggesting that they contain useful information about the time variation of the term

structure of equity premia.

Despite the rich information in the option-implied lower bounds, it might not provide

a complete description of the equity premium. Given numerous predictive variables found

in the literature, a combination of the lower bounds with existing predictors is likely to be

a promising way to improve the empirical reliability of OOS predictability. To the best of

our knowledge, the effect of combining the bounds with standard predictors (univariate or

multivariate) in such manner has not been thoroughly studied. Intuitively, one would expect

nent regression (Ludvigsona and Ng, 2007), forecast combination (Rapach, Strauss, and Zhou, 2010), and
boosted regression tree (Rossi and Timmermann, 2015).
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that the implied lower bounds, being informative restrictions, help to remove spurious signals

in the predictors and stabilize forecasts by excluding extreme predictions.

In this paper, we study the role of the implied lower bounds of Martin (2017) and CYL

in improving the OOS performance of standard predictive regression forecasts. Our method

is straightforward: we truncate the regression forecasts whenever they fall below the bounds.

This approach is similar to that of CT, the key difference being that the truncation is based

on option-implied bounds instead of zero. In our main analyses, we focus on 14 well-known

predictors from Welch and Goyal (2008) and evaluate the performance of our methodology at

both short and long forecast horizons (monthly, quarterly, semi-annual, and annual). Besides

univariate predictive regression, we investigate improvements upon the forecast combination

that pools individual forecasts by standard univariate regressions. Rapach, Strauss, and

Zhou (2010) show that by diversifying model misspecification risks, forecast combination is

a powerful way to mitigate model uncertainty.

Over the OOS evaluation period from February 2001 to June 2019, we find that option-

implied lower bounds help to improve the degree of forecast accuracy, as measured by the

OOS R2 (Welch and Goyal, 2008), of unconstrained predictive regression forecasts, espe-

cially at quarterly and longer horizons. At the monthly horizon, imposing Martin’s and

CYL’s lower bounds improves the R2
OOS values for 11 and nine of the 14 predictors, and

the corresponding increments in R2
OOS are 1% and 0.56%, on average, respectively. Such a

magnitude is sizable, since the usual level of monthly R2
OOS is rather small. Martin’s lower

bound also helps raise the R2
OOS value of the equal-weight combination forecast from -0.12%

to 0.10%. Turning to longer horizons, our framework yields more salient improvements. For

instance, at the semiannual horizon, the forecasting performance of 11 of the 14 predictors

is improved with the aid of CYL’s lower bound, and the average increment in R2
OOS reaches

21.06%. Notably, under the unconstrained predictive regression approach, only two predic-

tors produce positive R2
OOS values, and neither is significant, according to the statistic of

Clark and West (2007). In contrast, imposing CYL’s bound results in eight positive R2
OOS

values, the highest being 13.31%, generated by the long-term yield (LTY), and all the R2
OOS

values are significant at least at the 10% level. Moreover, our constrained approach enhances

the predictive accuracy of the forecast combination method, increasing its R2
OOS value from

-5.15% to 10.30%, significant at the 5% level. The effects of Martin’s bound are qualitatively
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similar (albeit slightly weaker). Generally, the benefits derived from imposing option-implied

lower bounds increase with the horizon and dominate the effect of the zero lower constraint

at the quarterly, semiannual, and annual horizons.

Following CT and Rapach, Strauss, and Zhou (2010), we quantify the economic value

of the constrained equity premium forecasts by gains in certainty equivalent return (CER)

delivered to a mean–variance investor who can dynamically allocate her wealth between

equity and T-bills, based on constrained forecasts. The asset allocation exercise reveals

that, compared to the strategy relying on unconstrained forecasts, imposing option-implied

bounds leads to extra CER gains in most of the cases, and the mean increment ranges from

33 basis points (bps) to 90 bps for the monthly, quarterly, and semi-annual rebalancing

frequencies. Finally, we extend our method by combining the upper bound for the equity

premium derived by CYL together with their lower bound. We find that, except for a few

cases, the predictive performance of the unconstrained model is uniformly improved, and

such improvements are stronger than those from using the lower bounds alone, especially at

longer horizons. In addition, our findings are robust to the option-based predictors, including

the variance risk premium of Bollerslev, Tauchen, and Zhou (2009), and alternative choices

of training period and risk aversion coefficient.

Our study contributes to the vast literature on time series return predictability by intro-

ducing the more informative equity premium constraint implied by options into the debate

over OOS predictability. Our results demonstrate that the use of option-implied bounds

to constrain conventional predictive regression forecasts leads to significant improvements

in OOS forecastability, particularly at longer horizons, with sizable utility gains for the

mean–variance investor. We attribute these improvements to the bounds’ several advan-

tages. First, since option-implied lower bounds incorporate conditional information on the

market and vary over time, the restrictions on the equity premium set by the bounds are

more informative than a simple zero and stabilize unconstrained forecasts by excluding ex-

treme predictions at the same time. Second, the unique and forward-looking information

contained in the bounds expands the information set of conventional economic predictors.

Third, the bounds’ term structure enables them to serve as tighter lower bounds for the

equity premium, especially at longer horizons. By comparing the two implied lower bounds,

we find that CYL’s lower bound performs better than Martin’s at longer forecast horizons,
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revealing that higher-order risk-neutral moment risk is crucial in driving the long-horizon

equity premium, consistent with CYL.

Besides the literature on return predictability, our paper relates to the growing literature

exploring the unique role of option-implied information in understanding the dynamics of

risk and the risk premium of the underlying asset. There has been a long tradition to recover

information from option prices in a model-free manner (Bakshi, Kapadia, and Madan, 2003;

Brandt, Koijen, and Van Binsbergen, 2012; Britten-Jones and Neuberger, 2000; Kozhan,

Neuberger, and Schneider, 2013). Unlike most of these studies, which focus primarily on the

information content of the implied information alone, our paper investigates the combination

of this information with that provided by conventional return predictors. In particular, we

find novel evidence of synergy derived from combining option-implied bounds with bond

yield–based predictors, such as LTY and the default yield spread (DFY). In other words,

the predictive power of the constrained model is greater than both the bounds themselves

and the unconstrained counterpart. Through decomposition of the mean squared prediction

error (MSPE), we explain such success by the reduction in forecast variance. From an

economic perspective, the bond yield–based predictors help explain the gap between the

bound and the realized excess return when the bound is slack. The synergy thus stems

from the information complementarity between the predictors and the bounds. Moreover,

subsample analyses suggest that the benefit delivered by the option-implied constraints is

stronger when the overall economy is good or the stock market volatility is low.

Overall, our study confirms the distinct value of using option-implied information in

forecasting aggregate market returns and reveals the information complementarity between

the index options market and the bond markets. We assume that the Standard & Poor’s

(S&P) 500 option market is informationally efficient and fully integrated with the underlying

index. Our approach, however, is subject to potential measurement error and mispricing in

the options market. Lastly, other bounds and exact formulas for equity premia are proposed

by recent studies4 that we do not use, and we leave these for future research.

The remainder of this paper proceeds as follows. Section 2 introduces the option-implied

bounds and methodology related to forecasting. Section 3 describes the data used in our

4Schneider and Trojani (2019) introduce upper and lower bounds of the nth physical moment of market
returns. Bakshi, Crosby, Gao, and Zhou (2019) propose an exact formula for the expected market excess
return. Martin and Wagner (2019) and Kadan and Tang (2020) extend Martin’s (2017) framework to
individual stocks and derive a lower bound on expected returns for a single stock.
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analysis. Section 4 reports the results on the OOS predictive performance of our approach.

Section 5 explores the sources of improvement in forecastability. Section 6 presents the

results for extensions and robustness tests. Section 7 concludes the paper.

2 Methodology

This section first introduces a relatively simple equity premium constraint motivated by

economic theory. Next, we describe the option-implied bounds on the conditional market

risk premium proposed by Martin (2017) and CYL and how we use them to constrain the

equity premium forecast.

2.1 Economic constraints on the market premium

Merton (1980) argues that, if the market is not riskless, risk-averse investors require a

positive expected excess return on the market. Given this generally reasonable assumption,

one would expect a non-negative equity premium when estimating the expected excess re-

turn on the market. CT empirically show that imposing a non-negative equity premium

constraint increases the OOS forecasting performance of most predictors. Therefore, we use

this relatively simple restriction as the first forecast-constrained approach.

2.2 Option-implied constraints on the market premium

As argued in the introduction, zero is an acceptable but naive lower bound for the

expected market premium. On the one hand, as a lower bound, zero does not incorporate

any conditional information on either the risk of the underlying asset or the overall economic

condition. On the other, zero seems too slack to be a meaningful lower bound, especially

for long-term market premia. Regarding these issues, we introduce another approach to

prescribe a lower and upper bound for the market risk premium.

2.2.1 Martin’s lower bound

By imposing mild assumptions on risk aversion, Martin (2017) derives a straightforward

lower bound for the conditional market risk premium that exploits the no-arbitrage as-

sumption and forward-looking information from option-implied distributions across different

6



maturities. More specifically, under the so-called negative correlated condition (NCC), Mar-

tin shows that the expected market premium should be no less than the risk-neutral variance

discounted by the risk-free rate, which can be calculated via the model-free method.

The no-arbitrage assumption implies a positive stochastic discount factor (SDF), Mt→T ,

such that Et[Mt→TRj,t→T ] = 1 for the gross return Rj,t→T from time t to T of every asset

j. Let Rf,t→T denote the gross risk-free rate between times t and T satisfying Rf,t→T =

1/Et[Mt→T ]. One fundamental implication of the SDF is the link between two probability

measures, the risk-neutral measure (Q) and the real-world measure (P, notation omitted for

brevity). For instance, the conditional risk-neutral variance of the gross return Rj,t→T for

any asset j can be written as

V arQt [Rj,t→T ] = EQ
t [R2

j,t→T ]− (EQ
t [Rj,t→T ])2 = Rf,t→TEt[Mt→TR

2
j,t→T ]−R2

f,t→T , (1)

where EQ
t [·] denotes the conditional expectation under the risk-neutral measure. By adding

and subtracting Et[MTR
2
j,t→T ] and applying some elementary properties, Martin demon-

strates that the expected excess return of any asset j can be equivalently written as

Et[Rj,t→T ]−Rf,t→T =
1

Rf,t→T
V arQt [Rj,t→T ]− Covt[Mt→TRj,t→T , Rj,t→T ], (2)

where Covt[·] denotes the conditional covariance operator under the physical measure at

time t. Accordingly, identity (2) decomposes the expected excess return of any asset j into

two components: V arQt [Rj,t→T ] and Covt[Mt→TRj,t→T , Rj,t→T ].

To see how the decomposition can be linked to a lower bound on the asset’s risk premium,

Martin further introduces the NCC, which allows the sign of the covariance term to be iden-

tified. As termed by Martin, the NCC holds if Covt[Mt→TRj,t→T , Rj,t→T ] ≤ 0. Consequently,

the deflated risk-neutral variance serves as a lower bound for the risk premium of asset j, as

long as the NCC holds for asset j. Therefore, we can obtain a lower bound on the expected

risk premium from time t to T of any asset that obeys the NCC, denoted as LBMt,t→T :

Et[Rj,t→T ]−Rf,t→T ≥ LBMt→T |t =
1

Rf,t→T
V arQt [Rj,t→T ]. (3)
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In this paper, we focus on the case in which Rj,T is the gross return on the market portfolio;5

from now on, LBMt,t→T always refers to Martin’s lower bound for the expected excess return

on the S&P 500 index.

2.2.2 Chabi-Yo and Loudis’s lower bound

In addition to Martin’s lower bound, we also consider the lower bound for the expected

market excess return derived by CYL. Though CYL prescribe an arbitrage-free economy,

as Martin (2017) does, their bounds do not rely on the validity of the NCC formalized by

Martin. The key to CYL’s approach is to express the physical expected excess return of

any asset j in terms of the covariance between the return and the inverse of the SDF via

application of the Radon–Nikodym theorem:

Et[Rj,t→T ]−Rf,t→T = Et

(
Rj,t→T

Mt→T

Et[Mt→T ]

Et[Mt→T ]

Mt→T

)
−Rf,t→T

= EQ
t

(
Rj,t→T

Et[Mt→T ]

Mt→T

)
−Rf,t→T

= CovQt

(
Rj,t→T ,

Et[Mt→T ]

Mt→T

)
,

(4)

where the ratio Et[Mt→T ]/Mt→T equals the inverse of Radon-Nikodym derivative.

To derive the lower bound, CYL further consider a one-period economy in which the

representative agent with initial wealth Wt has a smooth utility function u satisfying u′[·] > 0

and u′′[·] < 0. The agent maximizes her expected utility on terminal wealth (WT ), and the

first-order condition of the utility maximization problem implies that the SDF is proportional

to the marginal utility of terminal wealth:

u′[WT ]

Et(u′[WT ])
=

Mt→T

Et[Mt→T ]
, (5)

With some simplification, CYL obtain

Et[Mt→T ]

Mt→T
=

u′[WtRf,t→T ]

u′[WT ]

EQ
t

(
u′[WtRf,t→T ]

u′[WT ]

) with WT = WtRM,t→T . (6)

5For this particular case, Martin shows that the NCC holds in very general environments and is consistent
with many leading equilibrium models in which the relative risk aversion is at least one.
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After replacing the ratio Et[Mt→T ]/Mt→T in expression (4) by Eq. (6) and performing

a Taylor series expansion on the inverse of the marginal utility of wealth, CYL show that

expression (4) can be calculated as the sum of an infinite series of risk-neutral moments:

Et[RM,t→T ]−Rf,t→T = CovQt

RM,t→T ,

u′[WtRf,t→T ]

u′[WT ]

EQ
t

(
u′[WtRf,t→T ]

u′[WT ]

)
 =

∑∞
k=1 θkM

Q(k+1)
t→T

1 +
∑∞

k=1 θkM
Q(k)
t→T

, (7)

where the authors denote the risk-neutral moments of the market excess return as

M
Q(n)
t→T = EQ

t [(RM,t→T −Rf,t→T )n] for n ≥ 1 (8)

and θk are the preference parameters related to the investor’s tolerance for risk, skewness,

and kurtosis. By assuming that the odd risk-neutral moments are negative and θk ≤ 0 if k

is even and θk ≥ 0 if k is odd, CYL argue that the left-hand side of Eq. (7) is no less than

the infinite sum truncated at order three. In particular, under a set of restrictions on the

preference parameters 6, CYL obtain a lower bound on the expected market excess return:

Et[RM,t→T ]−Rf,t→T ≥ LBCLt→T |t =

1
Rf,t→T

M
Q(2)
t→T − 1

R2
f,t→T

M
Q(3)
t→T + 1

R3
f,t→T

M
Q(4)
t→T

1− 1
R2

f,t→T
M

Q(2)
t→T + 1

R3
f,t→T

M
Q(3)
t→T

, (9)

which we refer to as LBCLt→T |t in our paper.

2.2.3 Chabi-Yo and Loudis’s upper bound

CYL further derive an upper bound on the expected market premium. We incorporate

this upper bound together with the aforementioned lower bound to constrain return forecasts

as an extension of our study and we now briefly introduce it.7

CYL decompose the expected market excess return into two parts:

Et[RM,t→T −Rf,t→T ] = Et[(RM,t→T −Rf,t→T )1RM,t→T>k0 ] +Et[(RM,t→T −Rf,t→T )1RM,t→T≤k0 ],

(10)

where k0 is a prespecified level of gross return less than Rf,t→T . By construction, the second

6Specifically, the restrictions are θ1 ≥ 1/Rf,t→T , θ2 ≤ −1/R2
f,t→T , and θ3 ≥ 1/R3

f,t→T .
7Hansen and Jagannathan (1991) derive a well-known upper bound on the market risk premium that

has been widely used in assessing equilibrium asset pricing models. However, it involves an unobservable
quantity that can not be computed using options data.
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term on the right-hand side of Eq. (10) is always negative, indicating that Et[(RM,t→T −

Rf,t→T )1RM,t→T>k0 ] serves as an upper bound on the expected market excess return. To

compute this upper bound, again, CYL use the Radon–Nikodym theorem to transform

Et[(RM,t→T −Rf,t→T )1RM,t→T>k0 ] into a quantity under the risk-neutral measure and apply a

Taylor series expansion on the reciprocal of the representative investor’s marginal utility in

a manner analogous to the derivation of their lower bound. According to Result 6 of CYL,

the implied upper bound under certain restrictions on the preference parameters follows

Et[RM,t→T ]−Rf,t→T ≤
(M

Q(1)
t→T −M

Q(1)
t→T [k0]) +

∑3
k=1

(−1)k+1

Rk
f,t→T

(M
Q(k+1)
t→T −MQ(k+1)

t→T [k0])

1 +
∑3

k=1
(−1)k+1

Rk
f,t→T

M
Q(k)
t→T

, (11)

where M
Q(n)
t→T [k0] is the truncated risk-neutral nth moment of the market excess return defined

as

M
Q(n)
t→T [k0] = EQ

t [(RM,t→T −Rf,t→T )n1RM,t→T≤k0 ] for n ≥ 1. (12)

It is worth noting that the smaller k0 is, the tighter the upper bound will be. To en-

sure that there are enough option data to compute the upper bound while maintaining its

tightness, we set k0 = 0.85 and denote the right-hand side of Eq. (11) as UBCLt→T |t.
8

2.3 Univariate prediction model

After introducing the option-implied equity premium bounds, we discuss the predictive

regression model framework used in our analysis. Since our paper studies the role of the term

structure of option-implied bounds in improving forecasting performance, we focus on the

OOS prediction at various horizons. In this section, we first show how we perform a conven-

tional predictive regression over several horizons, and then we describe the implementation

of the aforementioned equity premium constraints.

2.3.1 Unconstrained predictive regression

The standard predictive regression approach in the literature assumes that the h−month-

ahead compound stock market return in excess of the risk-free rate, rt→t+h, is a linear function

8CYL use k0 = 0.80. However, due to the limited range of strike prices, we fail to compute the option-
implied upper bound for a few of the trading days using k0 = 0.80.
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of the lagged predictor variable xt:

rt→t+h = α + βxt + εt→t+h, t = 1, ..., N − h and h = 1, 3, 6, 12. (13)

To obtain the out-of-sample forecast, we separate a sample of N observations into two parts:

a training period n1 and a testing period n2 = N−n1. We start with regressing {rt→t+h}n1−h
t=1

on a constant and {xt}n1−h
t=1 to obtain the ordinary least squares (OLS) estimates of α and

β in Eq. (13), denoted as α̂n1 and β̂n1 , respectively. Then, the first OOS forecast made at

time n1 is calculated as

r̂n1→n1+h|n1 = α̂n1 + β̂n1xn1 . (14)

Moving to the next period, we extend the estimation window with the new information at

time t = n1 +1 while fixing the starting point. Similarly, we use the updated OLS estimated

coefficients to calculate the second forecast made at time n1+1. By repeating this procedure

for t = n1, ..., N − h, we can construct a time series of n2 − h+ 1 unconstrained forecasts of

the equity premium based on xt, denoted as
{
r̂UCt→t+h|t

}N−h
t=n1

.

2.3.2 Constrained predictive regression

Next, we discuss how to impose the aforementioned constraints on equity premium fore-

casts. Campbell and Thompson (2008) suggest truncating the OOS equity premium forecasts

at zero:

r̂CT0t→t+h|t = max
{
r̂UCt→t+h|t, 0

}
, h = 1, 3, 6, 12 (15)

where r̂UCt→t+h|t is the unconstrained return forecasts generate by Eq. (14). The zero lower

bound approach is readily used and widely adopted in the literature (Li and Tsiakas, 2017;

Pettenuzzo, Timmermann, and Valkanov, 2014). Empirically, it improves the OOS forecast-

ing performance of unconstrained models. Hence, this constrained approach is used as our

benchmark.

In this paper, we make a refinement to CT’s methodology that we truncate the predicted

equity premium by the option-implied lower and upper bounds described in Section 2.2:

r̂LBMt→t+h|t = max
{
r̂UCt→t+h|t, LBMt→t+h|t

}
, (16)
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r̂LBCLt→t+h|t = max
{
r̂UCt→t+h|t, LBCLt→t+h|t

}
, (17)

r̂L+Ut→t+h|t = min{max
{
r̂UCt→t+h|t, LBCLt→t+h|t

}
, UBCLt→t+h|t}, (18)

where LBMt→t+h|t is Martin’s lower bound and LBCLt→t+h|t and UBCLt→t+h|t are CYL’s

restricted lower and upper bounds, respectively. While the spirit of our truncation approach

is similar to CT’s, there remain important differences. First, the option-implied lower bounds

we imposed incorporate rich forward-looking information on the underlying asset that is

absent from zero. Second, the term structure of the bounds makes them a tighter and more

sensible lower constraint for longer-horizon equity premia. Therefore, we expect informative

option-implied bounds to improve the forecasting performance of unconstrained regression

models and to outperform the zero lower bound constraint.

2.4 Combining multivariate information

As pointed out by Ludvigsona and Ng (2007), Rapach, Strauss, and Zhou (2010), and

Pettenuzzo, Timmermann, and Valkanov (2014), due to the limited conditioning information

in a single predictor, univariate predictive regressions suffer from model uncertainty and

structural breaks, rendering the OOS performance unstable. Thus, we further examine

our constrained approach under a multivariate setting by exploiting the rich information in

multiple conditioning variables. To do so, we consider the forecast combination method of

Rapach, Strauss, and Zhou (2010) to unite the information contained in several predictors.

Specifically, our unconstrained forecast combination approach based on an equal-weighted

scheme9 is stated as

r̂comb,UCt→t+h|t =
M∑
i=1

ωir̂
UC
i,t→t+h|t, h = 1, 3, 6, 12 (19)

where M denotes the number of univariate models, ωi = 1/M , and t = n1, ..., N − h.

Next, we conduct similar procedures as in Section 2.3.2 to obtain the constrained com-

bination forecasts, denoted as r̂comb,CT0t→t+h|t , r̂comb,LBMt→t+h|t , r̂comb,LBCLt→t+h|t , and r̂comb,L+Ut→t+h|t , respectively.

Note that we combine the unconstrained individual forecasts before imposing equity premi-

9In this paper, we only consider the equal-weighted combination method, since we do not seek the
best type of combination method but, instead, are concerned about the gains of imposing the option-
implied bounds on the combination forecast. Moreover, as pointed out by empirical studies (Li and Tsiakas,
2017; Rapach, Strauss, and Zhou, 2010), the equal-weighted combination method often dominates more
sophisticated combination schemes, such as the trimmed mean and the discount MSPE.
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um constraints, rather than pooling the constrained individual forecasts. The reason is that

we would like to incorporate as much information from various predictors as possible. More

importantly, we want to explore the contribution, if any, of the option-implied bounds to

the forecast combination.

3 Data and summary statistics

3.1 Predictor variables and options data

The stock returns used in our analysis are compounded on the S&P 500 index with

dividends. We subtract the Treasury bill rate from the returns to measure the realized

equity premium. We consider a set of widely used conditioning variables studied by Welch

and Goyal (2008) and CT as the equity premium predictors. There are 14 predictors in total,

including the logarithm of the dividend–price ratio (DP), the logarithm of the dividend yield

(DY), the logarithm of the earnings–price ratio (EP), the logarithm of the dividend–payout

ratio (DE), stock return volatility (RVOL),10 the book-to-market ratio (BM), net equity

expansion (NTIS), the three-month Treasury bill rate (TBL), the long-term government bond

yield (LTY), the return on long-term government bonds (LTR), the term spread (TMS), the

default yield spread (DFY), the default return spread (DFR), and inflation (INFL). Appendix

A provides detailed descriptions of these predictors. The data of the predictors and the S&P

500 returns are obtained from Amit Goyal’s website.11

Following Martin (2017) and CYL, we use the S&P 500 index options data from the

IvyDB database of OptionMetrics to construct the term structure of option-implied bounds

on the market risk premium. The options data run from January 1996 to June 2019, and

include the expiration dates, strike prices, open interests, closing bid and ask quotes of

all call and put options. Before calculating the implied bounds, we apply some common

filters to mitigate the impact of recording errors and option illiquidity. We remove options

with zero open interests, zero bid prices, and maturities of less than six days. Options

whose prices violate usual non-arbitrage bounds are also excluded. Finally, we retain only

10Following Rapach, Ringgenberg, and Zhou (2016), we measure monthly stock market volatility using the
12-month moving standard deviation estimator proposed by Mele (2007). We also examine an alternative
variance estimator (SVAR), defined as the sum of the squared daily excess returns within a month (Schwert,
1989). Empirically, RVOL exhibits slightly better predictive performance than SVAR.

11See www.hec.unil.ch/agoyal/. We thank Amit Goyal for making the data available.
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standard index options expiring on the third Friday of each month. In addition, to mitigate

the effect of truncation errors12 when using the discretized versions of the spanning formulas

in Appendices B to D, we follow Jiang and Tian (2005) to extrapolate outside the range of

available strike prices.13 Finally, on any trading day, we apply the formulas in Appendices

B to D to compute the aforementioned option-implied bounds for all available maturities.

We then follow the CBOE’s procedure to calculate the bounds for 30, 90, 180, and 365 days

by linear interpolation.

3.2 Summary statistics

[Insert Table 1 here]

Panel A of Table 1 reports the descriptive statistics for the excess return on the S&P

500 index and the 14 predictors over the full sample period from January 1996 to June

2019. The average monthly market premium is 0.64%, producing an annualized Sharpe

ratio of 0.52 (not tabulated). In addition, the distribution of the S&P 500 index returns is

negatively skewed and leptokurtic, a fact well established in the literature. Panel B reports

the descriptive statistics for the option-implied bounds on the market risk premium used

in our paper. Compared to the market excess return, the option-implied lower bounds are

right skewed and have fatter tails. Note that LBMt→t+1m and LBCLt→t+1m have means of

0.35% and 0.40%, respectively, both lower than the average monthly market premium. In

contrast, the mean of UBCLt→t+1m is higher than the average monthly market premium.

Besides, as shown in the eighth column, the estimated AR(1) coefficient of the monthly

market excess return is small, nearly zero. This weak persistency is due to temporary shocks

contained in the realized returns that are uncorrelated over time. On the other hand, the

AR(1) coefficients of option-implied bounds all exceed 0.80, indicating that the bounds are

quite persistent, analogous to the expected return.

[Insert Figure 1 here]

12Jiang and Tian (2005) argue that computing option-implied moments via the model-free approach in-
volves truncation errors due to the limited range of strike prices.

13For any maturity in a trading day, we ensure the range of strike prices is at least as wide as [max{0, F0−
3.5IVATM · F0}, F0 + 3.5IVATM · F0], where F0 is the forward index price and IVATM is the Black–Scholes
implied volatility of the at-the-money option of the given maturity. To do so, we use the implied volatility
at the boundary strike prices for those strikes lying outside the available range. Then, we convert the
extrapolated implied volatilities to option prices through the Black–Scholes formula.
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Across horizons, we find that the average magnitude of the bounds gradually rises. Con-

sistent with CYL’s description, the mean, minimum, and maximum of LBCL across all

maturities are higher than for LBM . Furthermore, we plot the time series of LBM , LBCL,

and UBCL at all forecast horizons used in our analysis. Figure 1 shows that all bounds vary

substantially over time and increase across maturities, apparently exhibiting a term struc-

ture property. We observe that LBCL is tighter than LBM , in accord with the description

in Table 1, and both the upper and lower bounds remain low during normal times, while

surging during crisis and recession periods.

4 Main results

In this section, we present the OOS performance of the unconstrained predictive regres-

sion models and those constrained by the low bounds. We begin with the results on statistical

predictability and then move to the evaluation of the economic value of predictability.

4.1 Out-of-sample return forecasts

As mentioned in Section 2.3, we generate the OOS forecasts based on a recursive esti-

mation window. We consider an initial in-sample training period of five years (60 months)

so that our OOS period starts in February 2001 and continues through June 2019. After

accounting for lags and overlapping data, we obtain totals of 221, 219, 216, and 210 obser-

vations at monthly (h = 1), quarterly (h = 3), semi-annual (h = 6), and annual (h = 12)

horizons, respectively. An initial training period of 60 months is chosen to balance between

a sufficient long OOS period to evaluate the predictive performance and sufficient start-up

observations to estimate parameters reliably.

[Insert Figure 2 and Figure 3 here]

Before covering the statistical predictability results, we take a brief look at the forecasts

constrained by the option-implied lower bounds. Figures 2 and 3 plot the time series of

unconstrained and constrained one-step-ahead forecasts over the OOS evaluation period.

Regarding space limitations, we pick eight of the 14 predictor variables used in our paper:

DP, DE, RVOL, NTIS, TBL, LTY, DFY, and INFL. These predictors are selected as rep-

resentative variables covering several categories: fundamental-based valuation ratios, bond
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yields related, stock variance related, corporate finance related, and macroeconomy related

(Pettenuzzo, Timmermann, and Valkanov, 2014). We also report the equal-weighted forecast

combination (EconComb), which pools all 14 individual predictive regression forecasts. As

shown in Figure 2, all the forecasts produced by the unconstrained predictive regressions

are bounded by LBM during the recession periods in 2001 and the 2008 global financial

crisis. This is because LBM has a countercyclical pattern and jumps in periods of recession,

whereas most predictors signal a decline of the market. In addition, compared with the his-

torical mean benchmark forecast, r̂Bencht+1|t = 1/t
∑t

τ=1 rτ , depicted by the red dash-dot line,

both constrained and unconstrained forecasts are more volatile during the sample period.

Among the eight representative predictors, the unconstrained forecasts produced by NTIS

and INFL continually fall below LBM , resulting in frequent truncation. As depicted by

Figure 3, the forecasts constrained by LBCL show similar patterns.

4.2 Statistical predictability analysis

To evaluate the OOS performance of each model, we follow the literature (e.g., Welch

and Goyal, 2008) and use OOS R2 (R2
OOS) as the primary statistical criterion for comparing

the OOS forecasts of each model against the historical mean benchmark. The R2
OOS value

is calculated as

R2
OOS =

MSPEBench −MSPEModel

MSPEBench
= 1−

∑N−h
t=n1

(rt→t+h − r̂Model
t→t+h|t)

2∑N−h
t=n1

(rt→t+h − r̂Bencht→t+h|t)
2
, (20)

where r̂Model
t→t+h|t is the conditional market premium forecast generated by the model of interest

and r̂Bencht→t+h|t is the unconditional forecast of the historical mean benchmark, calculated as the

recursive average 1
t−h
∑t−h

τ=1 rτ→τ+h. A positive R2
OOS means that the forecasting model out-

performs the benchmark by producing a lower MSPE, that is, MSPEModel < MSPEBench.

To test the significance of R2
OOS, we apply the MSPE-adjusted statistic of Clark and West

(2007). The null hypothesis of CW’s test is that the benchmark MSPE is less than or e-

qual to the predictive regression MSPE against the one-sided alternative hypothesis that the

benchmark MSPE is larger than the predictive regression MSPE. To calculate the MSPE-

adjusted statistic, we follow CW and Rapach, Strauss, and Zhou (2010) to define the time

16



series {ft→t+h}N−ht=n1
, where

ft→t+h = (rt→t+h|t − r̂Bencht→t+h)
2 − [(rt→t+h − r̂Model

t→t+h|t)
2 − (r̂Bencht→t+h|t − r̂Model

t→t+h|t)
2]. (21)

Then, we regress {ft→t+h}N−ht=n1
on a constant and compute the heteroskedasticity- and autocorrelation-

consistent standard error (Newey and West, 1987).14 Eventually, we use the standard normal

distribution to obtain the one-sided p−value of the null hypothesis.

4.2.1 One-step-ahead predictability

[Insert Table 2 here]

Table 2 reports the R2
OOS statistics of the unconstrained models (second column) and the

constrained models (third through eighth columns) at a one-month forecast horizon for the

14 predictors and the combination forecast. The second column shows that a majority of the

individual predictors, except for DY, fail to beat the historical mean benchmark, consistent

with the critique of Welch and Goyal (2008). Even the combination forecast is outperformed

by the historical average over our sample period. The results of the seventh column imply

that imposing CT’s non-negativity restriction (CT0) on market premium forecasts improves

the OOS performance of most individual predictors, except for DY and INFL, as well as the

forecast combination method.

The third and fifth columns of Table 2 display the results for our approach that con-

strains the return forecasts by LBM and LBCL, respectively. From the third column, we

can tell that using LBM as a lower constraint on the market premium forecasts increases

the R2
OOS values for 11 of the 14 predictors and the combination forecast. On the other

hand, using LBCL as the lower constraint increases the R2
OOS values for nine of the 14 pre-

dictors, but not for the combination forecast. Overall, the lower constraints by LBM and

LBCL improve the average R2
OOS values of the unconstrained models by 0.95% and 0.50%,

respectively. Though these improvements seem small, an R2
OOS value of 0.5% for monthly

data could create economic value for a mean–variance investor in terms of asset allocation

Campbell and Thompson (2008). However, none of the positive R2
OOS values generated by

14When h > 1, to correct the serial correlation arising from the overlapping return data, we use 2∗h − 1
lags, a relatively large number, as suggested by Bekaert and Hoerova (2014), where h is the forecast horizon.

17



these two constrained methods is statistically significant at the 10% level, according to the

CW statistic.

As shown by the fourth, sixth, and eighth columns of Table 2, 28.2% of the unconstrained

forecasts are truncated below by LBCL, on average, which is higher than the average per-

centage of forecasts truncated by LBM (25.8%) and zero (10.7%). This result is to be

expected, since LBCL is a tighter lower bound than both LBM and zero, obviously, as

described in Section 3. Nevertheless, compared with using the option-implied lower bounds,

using zero to constrain the forecasts produced by the predictors used in our analysis leads

to more robust improvement in R2
OOS at the monthly horizon. In short, all three types of

lower constraint improve the OOS predictive performance of the unconstrained models at the

one-month forecast horizon, while CT0 performs the best. Since the predictable variation

of the monthly expected return is known to be small, the gain from using an informative

bound implied by options could be minor. However, this is not the case for longer forecast

horizons, whose results are shown in the following.

4.2.2 Multi-step-ahead predictability

[Insert Table 3 here]

Panels A to C of Table 3 report the R2
OOS statistic of each model at the quarterly, semi-

annual, and annual horizons, respectively. The OOS predictive ability of most unconstrained

models deteriorates significantly at longer horizons. The mean of R2
OOS generated by the

unconstrained predictive regressions (UC) decreases from -2.27% to -41.87% monotonically

as the forecast horizon increases from one month to one year. Neither combination fore-

cast outperforms the historical mean benchmark at any horizon. All three types of lower

constraint, LBM , LBCL, and CT0, continue to improve the predictive performance for a

majority of the unconstrained models. For example, at the quarterly horizon, using LBM ,

LBCL, and zero as lower constraints increases the predictive accuracy for 14, 13, and 12

of the 15 cases, and the corresponding average increments in R2
OOS are 7.55%, 7.12%, and

6.19%, respectively. Note that the improvement in R2
OOS increases with the horizon, and,

more importantly, the gains in predictive accuracy from imposing the option-implied bounds

dominate those of the zero lower constraint at all horizons. For instance, eight of the 15

LBCL-constrained models produce positive R2
OOS values that are significant at least at the
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10% level, whereas only four of the zero-constrained models outperform the historical mean

benchmark for a horizon of one year.

Besides the enhancements in predictive accuracy, we observe that the portion of un-

constrained forecasts truncated by the option-implied lower bounds remains high, about

25–30%, on average. In particular, the average percentage of forecasts truncated by LBCL

grows with the horizon, reaffirming it as a tighter lower bound. In contrast, the zero lower

constraint merely truncates a small portion of the unconstrained forecasts, 8.54%, on av-

erage, at the annual horizon, confirming that zero is an overly slack lower bound for the

long-term expected return. These findings are consistent with our expectation that the

option-implied lower bound should outperform the zero constraint at longer horizons, since

the former incorporates rich information about the market and has a time-varying term

structure pattern.

Between the two option-implied lower bounds, LBCL is better than LBM as a market

premium forecast constraint at the semi-annual and annual horizons. According to the eighth

column (h=6) in Table 3, using LBCL to constrain forecasts increases the R2
OOS values for

12 cases, eight of which are statistically significant at the 5% level and one at the 10% level.

Such improvements surpass those derived from using LBM as a lower constraint. This

is partially because the average percentage of forecasts truncated by LBM decreases over

horizons, whereas LBCL behaves just the opposite. Additionally, CYL point out that LBCL

considers the effect of high-order risk-neutral moments, which have particular importance in

measuring expected returns at longer horizons. This richer set of information contained in

LBCL also explains the stronger improvements in predictive performance relative to LBM .

Interestingly, the gains in predictive accuracy from imposing the option-implied bounds

constraint vary greatly among different predictors. For example, under the LBCL-constrained

approach, the increment in R2
OOS ranges from -2.70% (BM) to 91.09% (DFY) at the semian-

nual horizon. The improvements to the bond yield–based predictors are particularly promi-

nent. Notably, the combination of LBCL with LTY achieves great success, leading to sizable

R2
OOS values at the monthly (0.17%), quarterly (3.39%), semiannual (13.31%), and annual

(20.20%) horizons, whereas the combination with DP lowers the original R2
OOS. We will

discuss such heterogeneity in detail in Section 5. In brief, the forecasting performance of

most constrained models is better than that of their unconstrained counterparts at all four
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horizons, while the benefits of imposing the option-implied bounds dominate the zero lower

constraint at the quarterly, semi-annual, and annual horizons.

4.3 Economic value of predictability

The preceding section confirms that imposing the option-implied constraints on return

forecasts leads to better performance in terms of statistical predictive accuracy. In this

section, we assess the economic value of the market premium predictability generated by

each model. Following CT and Rapach, Strauss, and Zhou (2010), we consider a mean–

variance investor who can allocate his or her wealth between the S&P 500 index (the risky

asset) and Treasury bills (the risk-free asset) based on a constrained or unconstrained return

forecast. At the end of month t, the investor optimally allocates a portion

ωt =
1

γ

r̂t+1|t

σ̂2
t+1|t

(22)

of wealth to the market index, where γ is the risk aversion coefficient, r̂t+1|t is the forecast of

the market index excess return at time t+1 conditional on the available information at time

t, and σ̂2
t+1|t is the conditional forecast made at time t of the market index return variance at

time t+ 1. In addition, we impose a short-selling constraint as well as a maximum leverage

at 50% to restrict ωt to lie between 0 and 1.5, consistent with the literature.

The nominator of the optimal weight described in Eq. (22) is given by the OOS e-

quity premium forecast, but we also need the denominator, that is, the forecast of the

return variance. A typical approach to measure the denominator uses the unconditional

sample variance.15 The conditional variance of the stock market, however, is known to be

time-varying and highly persistent. Marquering and Verbeek (2004) empirically verify the

significant economic gain derived from employing volatility timing to a strategy relying on

timing in returns only. To keep our methodology simple and focus mainly on the economic

significance of timing in returns, we apply a parsimonious univariate AR(1) model to predict

the market return variance. To this end, we construct a proxy for the realized variance of

excess returns on the S&P 500 index by summing squared daily excess returns at a monthly

15Specifically, a multitude of studies estimate the return variance forecast by the variance of excess returns
over the past 10 years (e.g., Rapach, Strauss, and Zhou, 2010). Given the strong persistence and clustering
effect of the stock return volatility, this approach is somewhat inefficient.
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sampling frequency (Schwert, 1989):

RVt =
Nt∑
i=1

(ri,t − r̄t)2, (23)

where Nt denotes the number of trading days in month t, ri,t is the daily excess return on

the S&P 500 index, and r̄t is the mean of the daily returns in month t. Instead of directly

forecasting the level of realized variance at t+ 1, we follow Paye (2012) to model the natural

logarithm of variance as an AR(1) process:

LV ARt+1 = α + βLV ARt + εt+1, (24)

where LV ARt+1 ≡ log(RVt+1) and LV ARt is the lagged log realized variance. We estimate

this AR(1) predictive regression using a 15-year rolling window of historical returns. The

conditional variance forecast is then calculated as σ̂t+1|t = exp(L̂V ARt+1 + 1
2
σ2
ε ).

16

Given the estimated optimal weight ωt, the realized return of the investor’s market timing

strategy is

rp,t+1 = ωtrm,t+1 + rf,t+1, (25)

where rm,t+1 and rf,t+1 denote the excess market index return and the risk-free rate between

times t and t+ 1, respectively. Over the OOS period, the average realized utility (i.e., CER)

for the investor is then measured as

CERp = µ̂p −
γ

2
σ̂2
p, (26)

where ûp and σ̂2
p are the mean and variance of the portfolio return over the OOS evaluation

period, respectively. We quantify the economic value of the return predictability afforded by

the predictive model by the CER gain, which is defined as the difference between the CER

when the investor uses the predictive regression forecast and the CER when the investor

uses the historical mean benchmark forecast to construct the trading strategy. Such utility

gain can be interpreted as the portfolio management fee that an investor would be willing

pay for switching from using the historical mean forecast to the regression forecast. We also

16Note that we use the same volatility forecast in Eq. (22) for all portfolios, so that the differences among
portfolio weights are determined only by the different return forecasts.

21



evaluate and compare the performance of different market timing strategies by using the

Sharpe ratio. Finally, to assess the statistical significance of the incremental economic value

derived from using constrained return forecasts, we use the statistic proposed by Diebold

and Mariano (1995) to test the difference between the CER gains of two competing models

and the test of Jobson and Korkie (1981) with correction by Memmel (2003) to test the

equality of two Sharpe ratios.

Moreover, we assess the economic value of return predictability for horizons longer than

one month, by assuming that the investor’s portfolio is rebalanced at the same frequency as

the forecast horizon, following Rapach, Ringgenberg, and Zhou (2016). Due to limited OOS

observation points when using non-overlapping return forecasts, we consider only quarterly

and semiannual rebalancing frequencies, in addition to the monthly strategy.

Portfolio performance

Panel A of Table 4 presents the monthly asset allocation results. According to the

second column, an investor with a risk aversion coefficient of three using unconstrained

return forecasts for trading strategy guidance realizes an annualized CER gain of 52 bps,

on average.17 The third and fourth columns report the difference between the CER gains of

the LBM - or LBCL-constrained model and the corresponding unconstrained model. Using

LBM or LBCL to constrain the forecasts results in higher CER gains for 12 of the 15 cases,

where four increments are significant at least at the 10% level. The average improvement in

the CER gain by the option-implied lower bounds ranges from 78 to 90 bps.

[Insert Table 4 here]

To determine the period in which the utility gains are realized, we follow Eriksen (2017)

and plot the time series of the cumulative monthly CER gains. The realized CER gains

scaled by the length of the OOS period up to month t is defined as

CCERGmodel,t =
1

N − n1

t∑
τ=n1+1

(CERmodel,τ − CERbench,τ ), t = n1 + 1, ..., N, (27)

17Note that imposing a short-selling constraint on the portfolio weight is analogous to constraining the
equity premium predictions by zero, that is, CT0.
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where model denotes either the constrained or unconstrained predictive regression model,

bench is the historical mean benchmark model, N − n1 is the number of OOS observations,

and CERM,τ is the realized CER gain at time τ , which can be calculated as

CERM,τ = rp,τ −
γ

2
(rp,τ − µ̄p)2, for M = model or bench (28)

where rp,τ is the portfolio return at time τ , γ is the investor’s risk aversion coefficient, and

µ̄p is the mean portfolio return over the OOS period. Figure 4 shows that the realized CER

gains of both LBM - and LBCL-constrained models drop during the 2008 global financial

crisis. This is because a series of positive shocks to the expected return during the crisis

elevates the option-implied bounds to their all-time high, while the realized market return

becomes fairly negative because of the discount rate effect. Therefore, the larger weight on

the market index suggested by the constrained return forecast makes the strategy suffer from

a bigger loss than its unconstrained counterpart does. Nevertheless, both constrained models

shortly thereafter catch the strong market rebound, and the consistently upward trend of

the CER gain in some plots indicates that the constrained approach produces substantial

economic value during prolonged expansion periods after the crisis.

[Insert Figure 4 here]

At a quarterly horizon, Panel B in Table 4 shows that the unconstrained model produces

annualized CER gains of 65 bps, on average, while the use of LBM - and LBCL-constrained

forecasts moderately increases this quantity by 33 bps and 37 bps, respectively. In contrast,

our constrained approach leads to more substantial and significant improvements at the

semi-annual horizon. We observe an increment in the CER gain for nine of the 14 predictors

using the LBM - constrained (LBCL-constrained) approach, where seven (six) increments

are statistically significant at least at the 10% level. The improvements to the forecast combi-

nation method are 91 bps and 111 bps under the LBM - and LBCL-constrained approaches,

respectively, both significant at the 10% level.

In addition, Table 5 reports the annualized Sharpe ratio of these trading strategies.

A majority of the LBM - and LBCL-constrained models outperform their unconstrained

counterparts in terms of the SR. For instance, at the semi-annual horizon, the LBCL-

constrained approach improves the SR for 10 of the 15 cases, with seven of them significantly
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higher than their unconstrained counterparts at the 10% level. The gains in economic value

are generally larger for the bond yield–based predictors than the others, consistent with the

R2
OOS results. In particular, the CER gain and SR of the trading strategy that employs the

constrained forecasts based on LTY are always among the highest over all horizons.

[Insert Table 5 here]

We summarize that the economic value derived from imposing the option-implied lower

constraints is prominent and presents at the monthly, quarterly, and semi-annual horizons,

while the LBCL-constrained model tends to deliver greater CER gains than the LBM -

constrained model to a mean–variance investor.

5 The role of option-implied lower bounds

Thus far, we have shown that imposing the option-implied lower bounds proposed by

Martin (2017) and CYL on return forecasts leads to significant improvements in OOS pre-

dictive accuracy and economic value, particularly at longer horizons. In this section, we

determine why option-implied constraints improve upon standard predictive regressions. To

proceed, we first study the predictive ability of the option-implied bounds themselves. Sec-

ond, to understand the heterogeneity when combining the bounds with distinct predictors,

we link the improvements to the characteristics of the predictors. Finally, we investigate

forecasting ability over different economic conditions.

5.1 Option-implied lower bounds as predictors

As argued by Martin and CYL, the lower bounds are tight and thus could be a measure

of the equity premium itself. We therefore directly use the conditional option-implied lower

bounds as the forecasts for the expected market premium, that is, r̂t→t+h|t = LBMt→t+h|t or

LBCLt→t+h|t. Similarly, we use R2
OOS, the CER gain, and the Sharpe ratio to measure the

statistical and economic significance of the bounds’ predictive ability.

[Insert Table 6 here]

Table 6 reports the statistical and economic predictability of LBM and LBCL over the

same OOS evaluation period. First note that the predictive performance of LBM is slightly
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better than that of LBCL at the monthly and quarterly horizons, whereas neither generates

a significantly positive R2
OOS. Turning to longer horizons (semi-annual and annual), both

bounds exhibit prominent forecasting ability, while LBM underperforms LBCL, which is

consistent with CYL’s findings. For instance, at the semi-annual forecast horizon, the R2
OOS

values generated by LBM and LBCL are 7.94% and 10.38%, respectively, both significant

at the 5% level. The remarkable predictive ability of the bounds partially explains the large

improvement to the unconstrained models at longer horizons.

Next, the Sharpe ratios of the trading strategies relying on the implied bounds are higher

than those of the historical mean benchmark model at all horizons, as presented in Table 5.

Nevertheless, the negative CER gains in Panel B of Table 6 indicate that neither LBM nor

LBCL outperforms the historical mean benchmark forecast in terms of the realized utility

from the monthly and quarterly asset allocations. This is mainly because the timing strategy

based on either bound aggressively weights equity during turbulent times, thereby rendering

the portfolio return quite volatile. To address these seemingly contradictory results between

the CER gain and the Sharpe ratio, we mainly rely on the former to evaluate a strategy’s

performance, since the latter does not penalize suboptimal leverage (Kan and Zhou, 2007).

For the semi-annual rebalancing frequency, the LBCL model generates a positive CER gain

of 61 bps, which is greater than the LBM model (1 bp). Both, however, are inferior to the

average CER gain of the unconstrained models.

In sum, the return forecasting ability of LBM and LBCL surpasses most of the predictors

of Welch and Goyal (2008) and the term structure feature largely allows the bounds to make

fairly good predictions at longer forecast horizons. However, this is not the whole story, since

the bounds only truncate about 25–30% of the unconstrained forecasts, on average. Besides,

from an asset allocation perspective, the predictive ability fails to deliver any economic value

at the monthly and quarterly rebalancing frequencies. Thus, we take a closer look at the

improvements among different predictors, as discussed in the following.

5.2 A closer look at the improvements

As indicated in Tables 2 and 3, the increments in R2
OOS resulting from imposing the

option-implied bounds vary greatly among the predictors. For instance, we uncover synergy

from combining option-implied bounds with some predictors, such as LTY and DFY. In
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other words, the R2
OOS values of the constrained forecasts are higher than both for the

unconstrained counterpart and the bounds themselves. The predictive performance of DP

and DY, however, is slightly impaired after imposing either LBM or LBCL. Why do some

predictors pair well with the lower bounds, while other do not? To address this issue, we

explore the relation between LBCL and unconstrained return forecasts in detail.18

[Insert Figure 5 here]

Figure 5 plots the increment in R2
OOS for the unconstrained forecast against the cor-

relation of unconstrained forecasts based on the 14 predictors with LBCL over the OOS

evaluation period. A straight line is fitted via OLS to capture trends. First, we notice that

unconstrained forecasts generated by most of the predictors are negatively correlated with

LBCL over all horizons. An obviously downward-sloping line presented in each plot implies

that, to a certain extent, the more negative the correlation between the unconstrained fore-

casts and the bound, the larger the increment in R2
OOS derived from imposing the bound.

In particular, the forecasts based on DFY or LTY are the most negatively correlated with

LBCL, and their combinations with LBCL yield the synergy. On the other hand, the cor-

relations between LBCL and forecasts produced by DP or DY are near zero at the monthly

horizon and become positive at longer horizons.

In the spirit of the diversification effect in portfolio management, we expect the negative

correlation between LBCL and unconstrained forecasts to lead to a decline in forecast vari-

ance after the bound is imposed. In addition to forecast variance, forecast bias constitutes

part of the MSPE. Therefore, we perform an MSPE decomposition, as Rapach, Strauss, and

Zhou (2010), to dissect the change in predictive accuracy.19 We can attribute the increment

in predictive accuracy to a reduction in forecast variance if the constrained forecasts do not

have excessive forecast biases compared to their unconstrained counterparts.

[Insert Figure 6 and Figure 7 here]

Figures 6 and 7 plot the OOS forecast variance and the squared forecast bias for the

LBCL-constrained predictive regression model and its unconstrained counterpart at the

18We obtain similar results when using LBM . Due to space limitations, these results are not tabulated
here and can be found in the Online Appendix.

19Rapach, Strauss, and Zhou (2010) show that MSPE ≈ σ2
r + σ2

r̂ + (¯̂r − r̄)2, as long as the correlation
between the actual and predicted returns is near zero, where σ2

r is the actual return variance, σ2
r̂ is the

forecast return variance, and (¯̂r − r̄)2 is the squared forecast bias.
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monthly and semi-annual forecast horizons, respectively. For readability, we only plot the

forecast combination and the eight representative predictors selected in Section 4.1, plus

BM and TMS. We use a dashed line to split the plot into two parts, so that moving toward

the lower-left corner represents a reduction in both the forecast variance and bias. As

expected, these two scatter plots show that the forecast variance tends to be lower for

those unconstrained models that are weakly or negatively correlated with LBCL, except

for DP and RVOL. Although our constrained approach increases the forecast bias of some

unconstrained models, the decline in variance dominates the change of the MSPE, resulting in

considerable increments of R2
OOS, as shown in Section 4.20 Notably, despite some predictors,

such as DFY and NTIS, originally being above the dashed line, their constrained counterparts

move toward the origin and are below it.

Besides the diversification effect, we argue that the negative correlation between LBCL

and unconstrained forecasts results from the erroneous predictions made by the predictor,

provided that LBCL tracks the equity premium. The more negative the correlation is, the

more false signals and outliers are involved in unconstrained forecasts, possibly due to the

noises and variations of predictors that are unrelated to the equity premium. The bound

LBCL being an informative lower bound helps to eliminate those false signals such that

the forecasts are well behaved and less volatile. Therefore, we observe an improvement in

forecasting performance, especially for those models that are most negatively correlated with

the bound.

In addition to the preceding statistical explanations, we offer one plausible interpretation

for the heterogeneity in improvement by analyzing the information content of the predictors.

Based on the decomposition of Campbell and Shiller (1988), Cochrane (2011) empirically

finds that the variation of the DP ratio is largely due to the variation of the changes in

the future expected return. Namely, DP is primarily driven by change in the expected

return, as are the option-implied bounds. DY and BM behave similarly to DP.21 Therefore,

since the bounds and these predictors share a common component related to the expected

return, the assistance of imposing the option-implied constraint is minor. The covariance

20The change in the squared forecast bias is far less than the change in forecast variance. For example, in
the cases of NTIS and DFY, the reduction in variance accounts for over 62% and 85%, respectively, of the
total decline in the MSPE, where the percentages in decline are calculated as ∆V ariance

∆MSPE and ∆MSPE ≈
∆Bias+ ∆V ariance.

21The variable BM has played a similar role to that of DP in the stock return decomposition (Vuolteenaho,
2002). The correlations of DP with DY and with BM are 0.98 and 0.67, respectively, in this sample.
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between them could also lead to additional variance in the constrained forecasts, resulting

in a higher MSPE. In contrast, variables related to the bond yields, such as LTY and DFY,

contain information on the economic phases spanning several years that are absent from the

option-implied bounds. The complementary information of predictors thus contributes to

the synergy.

To further determine which predictor provides information complementarity, we use 11

variables (excluding DY, DE, and TMS, for collinearity) of Welch and Goyal (2008) to

predict the gap between the bound and the realized excess return. If the bound is always

tight, the gap is unpredictable; otherwise, those predictors that can capture the variation of

the gap would likely contribute additional information to the bound. The results in Table

7 demonstrate that the 11 predictors together explain a large portion of the gap’s variation,

producing R2 values from 12% to 61%. In particular, the bond yield–based predictors are

usually among the few significant ones, suggesting that the information from the bond market

complements the bound when it is slack. The ability to predict the gap makes the bond

yield–based predictors a good “partner” for the bound.

[Insert Table 7 here]

Overall, we conclude that the forecasting performance is improved, on average, but with

apparent heterogeneity among the predictors. The improvements are mainly due to reduc-

tions in forecast variance, while the differences among them could arise from the distinct

dynamics and information sources of the predictors.

5.3 Predictability over good and bad times of the economy

The strength of stock return predictability varies over business cycles. We are also inter-

ested in the contribution of option-implied bounds to the unconstrained prediction models

under different economic conditions. The National Bureau of Economic Research (NBER)

business cycle is the standard measure of U.S. business cycle phases in the literature. How-

ever, confined by the length of the option data, there are only two recessions over the OOS

period from February 2001 to June 2019, with peaks (troughs) in February 2001 (October

2001) and November 2007 (May 2009). Given the limited number of recessions within our
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sample, we consider the Chicago Fed National Activity Index (CFNAI)22 as a real-time indi-

cator to split the OOS periods into good times and bad times of the economy. The CFNAI

serves as a summary measure of the overall economic activity at a monthly frequency. In

our study, we treat periods with a positive index as good times for the economy and periods

with a negative index as bad times, or, to some extent, contraction periods.23 Following

Rapach, Strauss, and Zhou (2010), we compute the monthly R2
OOS over different economic

conditions as

R2
OOS,c = 1−

∑N−1
t=n1

Ict+1(rt+1 − r̂Model
t+1|t )2∑N−1

t=n1
Ict+1(rt+1 − r̂Bencht+1|t )2

, for c = GOOD, BAD, (29)

where IGOODt+1 (IBADt+1 ) is set equal to one whenever the CFNAI is positive (negative) in month

t+ 1, and zero otherwise.

[Insert Table 8 here]

Panels A and B in Table 8 report the monthly R2
OOS values over bad and good times, re-

spectively. Most unconstrained predictive regression models perform better during bad times

than good times, consistent with the literature. Compared with the option-implied lower

constraints, CT0 produces the largest improvement in predictive accuracy for the uncon-

strained model during bad economic times. In contrast, during good times, the R2
OOS values

of LBM - and LBCL-constrained models are uniformly better than for the unconstrained

counterparts. The mean R2
OOS of the unconstrained model during good times increases from

-2.65% to 2.98% and 4.08% after imposing the LBM and LBCL constraints, respectively.

Among the positive R2
OOS values generated by either the LBM - or LBCL-constrained mod-

els, 10 of the 13 cases are significant at least at the 10% level. Such increments in R2
OOS are

substantially larger than those associated with CT0.

The results in Table 8 demonstrate that imposing the option-implied constraints leads

to markedly large increments in predictive accuracy during good economic times, while

performing poorly during bad times. The last row of Table 8 shows similar results for directly

using the bounds as forecasts; namely, both LBM and LBCL exhibit strong forecasting

22The CFNAI was developed by the Federal Reserve Bank of Chicago based on a series of inflation-
adjusted economic indicators. We obtain CFNAI data from the Federal Reserve Bank of St. Louis (the
Federal Reserve Economic Data database).

23Eriksen (2017) uses the three-month moving average of the CFNAI to measure real economic conditions.
The author terms good times an economy with a high CFNAI, and recessions an economy with a low CFNAI.
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ability during good times, while neither beats the historical mean benchmark model during

bad times. According to Campbell (1991), shocks to the expected returns are negatively

correlated with shocks to the realized returns. In bad economic times, especially during the

2008 global financial crisis, we observe a surge in option-implied bounds, potentially driven

by a series of positive expected return shocks, whereas realized returns move in the opposite

direction. Therefore, the large discrepancy between LBM or LBCL and realized returns

creates significant prediction errors.

Moreover, we examine the return predictability during high- and low-VIX periods (Table

A.2 in the Online Appendix). Similarly, we find that option-implied constraints generate

more substantial improvements during low-VIX periods, while CT0 performs better during

high-VIX periods. The use of option-implied constraints is optimal when the overall economy

is good, as is the use of zero constraints in turbulent market periods.

6 Extensions and robustness analysis

In this section, we consider several extensions to our main results. First, we add the slope

constraint recommended by CT to the previously discussed constrained models. Second, we

incorporate the upper bound on the equity premium derived by CYL together with their

lower bound. Third, we extend our analysis to the option-based predictors. Finally, we

examine the robustness of our results with different investor risk aversion coefficients and

alternative training periods.

6.1 The impact of slope restriction

[Insert Table 9 here]

CT also suggest a slope constraint that sets the regression coefficient to zero whenever

its sign contradicts theoretical expectations. In this section, we examine the joint effect of

this slope constraint and the lower bound constraint on forecasting performance. We first

employ the slope constraint and then truncate the return predictions by the corresponding

lower bound. We only consider the monthly and quarterly forecast horizons.24 Table 9

24The short-term relation between returns and certain predictors, such as TMS, can be reversed in the
long term (Fama and French, 1989).
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reports the OOS results for the constrained model with both restrictions. By comparing the

mean R2
OOS in the second to seventh columns with the results in Tables 2 and 3, we find

that adding the slope restriction further improves the predictive performance, whereas the

improvements are relatively minor. The lower bound constraint plays a dominant role in

enhancing the forecasting ability of the unconstrained model.

6.2 Upper bound on market premium forecasts

Our main results emphasize the impact of imposing the option-implied lower bound con-

straint on return forecasts. In this section, we study the joint effect of using the upper

bound, UBCL, together with the lower bound, LBCL, to constrain the return forecasts,

that is, the forecasts generated by Eq. (18). The results in Table 10 show that the R2
OOS

values of the constrained models that employ both bounds (LB + UB) exceed the corre-

sponding unconstrained models by a large amount at all horizons, except for a few cases

at the monthly horizon. More importantly, we observe a greater improvement in predic-

tive performance that surpasses the gains from only employing the lower bound constraint.

The additional increments in the average R2
OOS relative to the LBCL-constrained model are

1.45%, 4.54%, 12.52%, and 38.66%, respectively, over the four horizons. Intuitively, the more

restrictive constraint placed by the lower and upper bounds together removes both negative

and extremely positive predictions, further stabilizing the forecast.

[Insert Table 10 here]

To provide insight on such improvements, we first examine the bounds themselves. As

indicated by Figure 1, the distance between LBCL and UBCL shrinks over the horizons,

which confines the forecasts produced by the different predictors to a relatively narrow

range. Accordingly, the forecasting performance of the constrained models based on different

predictors converges to the bounds at the longer horizon. Second, the expected returns are

known to be persistent (Campbell, 1991; Fama and French, 1989).25 It is thus conceivable

that the return forecasts are unlikely to be consistently volatile, being smooth most of the

time while fluctuating strongly only during turbulent periods. The noisy return forecasts,

either too high or too low, due to the false signals in the predictors deteriorate the predictive

25Koijen and Van Binsbergen (2010) empirically show that the annual persistence coefficient of expected
returns is greater than 0.9.
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precision. Consequently, the additional upper bound constraint further reduces the forecast

variance. Through an MSPE decomposition, we also find a decline in the forecast bias after

imposing both constraints relative to imposing only the lower one.

As a final point, the upper bound on the equity premium we impose can be linked to

an economically motivated constraint on the Sharpe ratio that has a long tradition in asset

pricing. Due to quick investor response, an investment opportunity with a high SR, that is,

“a good deal” (Cochrane and Saa-Requejo, 2000), is transitory and not likely to persist in

the equity market, especially for the market portfolio. In the return predictability study of

Pettenuzzo, Timmermann, and Valkanov (2014), the upper limit of the conditional SR for the

market portfolio is set at one. Since the expected market excess return equals its conditional

SR times the volatility, the SR constraint can avoid improbably high return forecasts. In

our case, given the market volatility, UBCL turns into a SR constraint (potentially time-

varying) that can rule out near-arbitrage opportunities. In other words, the upper bound

on the equity premium eliminates those implausibly large predictions and, consequently,

enhances the predictive performance.

6.3 Combining with the option-based predictors

Our main analysis focuses on 14 economic predictors that are widely used in the literature.

In addition, the literature has uncovered several strong return predictors from the options

market. We are thus interested in whether the bounds or the option-based predictors use

the option information more efficiently. In other words, we examine whether the bounds can

improve the OOS predictive performance of these predictors. We consider five option-based

predictors, the variance risk premium (Bollerslev, Tauchen, and Zhou, 2009, VRP),26 the

forward variance factor (FVF) and the forward skewness factor (FSF) (Andreou, Kagkadis,

Philip, and Taamouti, 2019), the squared VIX (VIX2), all constructed from the S&P 500

options data, and the implied volatility spread (Han and Li, 2020, IVS), constructed from

the individual stock options data. Again, we apply an equal-weighted forecast combination

to combine individual forecasts.

[Insert Table 11 here]

26See sites.google.com/site/haozhouspersonalhomepage/. We thank Hao Zhou for making the VRP
data available.
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The results in Table 11 demonstrate that the option-implied lower bound constraint

leads to better performance for all option-based predictors, except for a few cases at shorter

horizons. The predictive accuracy of the forecast combination method is also improved at

semi-annual and annual horizons. The predictor VRP performs well during the financial

crisis (Bekaert and Hoerova, 2014). Empirically, we find that VRP of Bollerslev, Tauchen,

and Zhou (2009) captures some market downturns at shorter horizons, while this ability is

weakened by the lower bound constraint. However, both LBM and LBCL greatly strengthen

the predictive performance of VRP at longer horizons, indicating that the bounds incorporate

unique information about the long-term equity premium from the options market.

6.4 Alternative risk aversion coefficient

In Section 4.3, we evaluate the economic value of return predictability for a mean–variance

investor with a relative risk aversion coefficient (γ) of three. To check the robustness of our

results under alternative specifications, we consider the case of γ = 5 and report the asset

allocation results in Table 12.

[Insert Table 12 here]

Compared to the results in Table 4, not surprisingly, the magnitude of the CER gain

in Table 12 decreases as γ increases. Nevertheless, our constrained approach continues

to improve the asset allocation performance of the most unconstrained models and the

significance of the improvements barely changes. As shown in Panel A in Table 12, using

LBM (LBCL) to constrain the monthly market premium forecasts leads to higher CER

gains for 12 of the 15 cases, and the average increment in CER gain is 47 bps (54 bps).

Similar results can be found at longer horizons (Panels B and C). Therefore, the economic

value derived from our method is robust to the investor’s risk aversion coefficient.

6.5 Alternative training period

As discussed in Section 4.1, our OOS forecasts begin five years (60 months) after the

sample, so that we have sufficient observations to evaluate the OOS forecast. Since the length

of the initial in-sample estimation period depends primarily on the underlying sample period,

the choice of the initial training period varies in the literature. To explore the sensitivity of
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our results to this choice, we use the first eight years (96 months) as an alternative initial

training period when recursively estimating the market premium forecasts.

[Insert Table 13 here]

Table 13 reports the R2
OOS statistics for the constrained and unconstrained models at

four different forecast horizons when the initial training period equals 96 months. Similarly,

all the unconstrained predictive regression models fail to outperform the historical mean

benchmark at the monthly forecast horizon, and the predictive accuracy deteriorates as the

forecast horizon increases, except for a few cases. Among the three types of lower constraint,

again, CT0 generates the largest improvement in R2
OOS for the unconstrained model at the

monthly horizon, while LBM and LBCL dominate CT0 at longer horizons. Notably, the

increment in R2
OOS at longer horizons is more significant in this sample period. For example,

the average R2
OOS of the LBCL-constrained model becomes positive at the semi-annual and

annual horizons.

7 Conclusion

In this study, we propose a new constrained forecasting strategy that employs two option-

implied lower bounds on the conditional market risk premium derived by Martin (2017) and

CYL, respectively. The empirical results show that our approach significantly improves

OOS predictive accuracy of conventional economic and financial predictors, especially for

semi-annual and annual forecast horizons, at which most unconstrained predictive regression

models perform poorly. The improvements increase with the horizon and exceed the benefits

of using the prevailing zero lower constraint. Even stronger performance is uncovered when

the upper bound on equity premium from CYL is incorporated. Besides the enhancements in

forecasting ability, our constrained approach delivers pronounced economic gains to mean–

variance investors.

To gain further insights into our method, we study the differences in combining the bound-

s with distinct predictors and explain the forecast improvements from two perspectives. On

the one hand, compared with using a simple zero as the lower bound, the option-implied

lower bound constraint we employ not only rules out negative excess return forecasts, but

also sets a term structure of theoretically more reasonable lower constraints on the expected
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market premium, thereby greatly reducing the false signals of unconstrained forecasts. On

the other hand, our method exploits the unique and forward-looking information about the

expected returns implied from the index options market. More importantly, this conditional

information complements a variety of economic and financial predictors in general, particu-

larly bond yield–based predictors, and contributes to predictive performance that is stronger

than that of both the predictors and the bounds themselves. Taken together, our approach

can be regarded as a way to accommodate parameter instability and, in the meanwhile,

incorporate multiple sources of conditional information.

The aim of our study is to shed light on the role of option-implied bounds in return

predictability. Though the aforementioned benefits are substantial and robust, our method

of truncating the forecasts from below is relatively simple, since the estimated coefficients

of the predictive regression do not learn from the option-implied bounds. A potential ex-

tension to our method is to train the regression parameters with the information provided

by option-implied bounds through the methods of, for instance, Pettenuzzo, Timmermann,

and Valkanov (2014). We stress that this method can be applied to any return predictors

besides the ones used in our analysis and could be extended to stock- and portfolio-level

return predictability with suitable modifications. Overall, our empirical findings could serve

as guideposts for future investigation of OOS stock return predictions.
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Table 1: Summary Statistics

This table presents summary statistics for the monthly excess returns on the S&P 500 index (Mkt. Prem.),
14 predictive variables, and option-implied market premium bounds used in our paper. AR(1) denotes the
estimated coefficient for an autoregressive model of order one. The variable LBM is the lower bound on the
expected market premium (in percent), calculated by the method of Martin (2017), and LBCL and UBCL
are the lower and upper bounds, respectively, on the expected market premium (in percent), calculated
by the method of CYL. The sample period is from January 1996 to June 2019, containing 282 monthly
observations.

(1) (2) (3) (4) (5) (6) (7) (8)
Mean Std. Dev. Skewness Kurtosis Max. Min. AR(1)

Variable

Mkt. Prem. (%) 0.64 4.29 −0.65 4.02 10.90 −16.79 0.04
DP −4.01 0.20 −0.09 4.18 −3.28 −4.52 0.98
DY −4.01 0.20 −0.21 4.03 −3.29 −4.53 0.98
EP −3.15 0.37 −2.14 9.39 −2.57 −4.84 0.98
DE −0.86 0.42 3.36 16.03 1.38 −1.24 0.98
RVOL (ann.) 0.14 0.06 0.58 2.87 0.32 0.05 0.97
BM 0.27 0.07 −0.20 2.24 0.44 0.12 0.96
NTIS 0.00 0.02 −0.67 2.92 0.03 −0.06 0.98
TBL (%, ann.) 2.18 2.05 0.44 1.60 6.17 0.01 0.99
LTY (%, ann.) 4.40 1.44 0.03 1.91 7.26 1.75 0.99
LTR (%) 0.58 3.00 0.08 5.23 14.43 −11.24 0.00
TMS (%, ann.) 2.22 1.29 −0.03 1.96 4.53 −0.41 0.98
DFY (%, ann.) 0.99 0.42 3.04 15.18 3.38 0.55 0.96
DFR (%) 0.03 1.78 −0.45 8.90 7.37 −9.75 0.02
INFL (%) 0.18 0.35 −0.90 7.59 1.22 −1.92 0.48

Option-implied bounds (%)

Martin (2017)
LBMt→t+1m 0.35 0.30 3.16 17.13 2.39 0.06 0.81
LBMt→t+3m 1.05 0.76 2.72 13.64 5.72 0.30 0.86
LBMt→t+6m 2.10 1.29 2.31 10.72 9.41 0.65 0.89
LBMt→t+12m 4.19 2.21 1.94 8.51 15.60 0.57 0.91

Chabi-Yo and Loudis (2020)
LBCLt→t+1m 0.40 0.37 3.55 20.94 3.16 0.07 0.80
LBCLt→t+3m 1.29 1.03 3.17 17.18 8.01 0.34 0.84
LBCLt→t+6m 2.78 1.92 2.70 13.14 14.24 0.76 0.87
LBCLt→t+12m 6.06 3.70 2.37 10.80 26.73 1.62 0.90
UBCLt→t+1m 0.75 0.74 2.97 14.86 5.39 0.09 0.80
UBCLt→t+3m 2.39 1.62 2.11 9.36 11.06 0.35 0.86
UBCLt→t+6m 4.61 2.39 1.86 8.16 16.73 1.37 0.89
UBCLt→t+12m 8.43 3.61 1.70 7.23 25.76 3.59 0.91
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Table 2: Monthly return predictability: R2
OOS

This table presents the OOS forecasting results at the monthly horizon for the constrained and unconstrained
predictive regression models. UC denotes the unconstrained predictive regression, that is, forecasts generated
by Eq. (14); LBM denotes the predictive regression constrained by Martin’s (2017) lower bound on the
market excess return, that is, forecasts generated by Eq. (16); LBCL denotes the predictive regression
constrained by CYL’s lower bound on the market excess return, that is, forecasts generated by Eq. (17);
CT0 denotes the constrained predictive regression with Campbell and Thompson (2008) non-negativity
restriction on equity premium forecasts, i.e. forecasts generated by Eq. (15). We use the R2

OOS statistic (in
percent) calculated by Eq. (20) to evaluate the forecasting performance, where the statistical significance
is determined by the upper-tail p-value for the Clark and West (2007) statistic. The heading % bound
denotes the percentage of unconstrained forecasts truncated by the corresponding lower bound. *, **, and
*** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. The OOS period is from
February 2001 to June 2019.

(1) (2) (3 (4) (5) (6) (7) (8)
UC LBM LBCL CT0

Variable R2
OOS (%) R2

OOS % bound R2
OOS % bound R2

OOS % bound

DP −0.74 −0.59 10.9 −1.03 12.2 −0.44 0.9
DY 0.30 0.22 10.9 −0.12 12.2 0.29 1.8
EP −3.12 −0.85 24.9 −1.42 27.6 0.36** 13.6
DE −6.43 −2.81 24.4 −3.38 27.1 −1.57 11.3
RVOL −0.37 −0.70 20.4 −1.18 24.4 −0.20 0.9
BM −3.46 −2.98 18.1 −3.37 20.4 −2.95 7.7
NTIS −1.74 −1.30 61.1 −1.57 63.3 −0.87 42.5
TBL −4.15 −2.75 26.2 −3.22 28.1 −2.49 13.6
LTY −1.39 0.71 29.9 0.17 30.8 0.82* 14.5
LTR −1.06 −0.30 24.0 −0.76 27.1 −0.54 3.6
TMS −2.58 −2.55 24.4 −3.11 26.2 −1.91 9.0
DFY −3.54 −0.18 32.6 −0.59 36.2 0.46 17.6
DFR −4.63 −3.87 19.5 −4.15 22.6 −3.94 5.9
INFL −0.95 −1.93 37.1 −2.33 38.9 −1.29 13.1
EconComb −0.12 0.10 23.1 −0.36 25.8 0.59 4.5

Mean −2.27 −1.32 25.8 −1.76 28.2 −0.91 10.7
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Table 3: Return predictability at longer horizons: R2
OOS

This table presents the OOS forecasting results at the h-month horizon for the constrained and unconstrained predictive regression models. UC denotes the
unconstrained predictive regression, that is, forecasts generated by Eq. (14); LBM denotes the predictive regression constrained by Martin’s (2017) lower
bound on the market excess return, that is, forecasts generated by Eq. (16); LBCL denotes the predictive regression constrained by CYL’s lower bound on
the market excess return, that is, forecasts generated by Eq. (17); CT0 denotes the constrained predictive regression with Campbell and Thompson (2008)
non-negativity restriction on equity premium forecasts, that is, forecasts generated by Eq. (15). We use the R2

OOS statistic calculated by Eq. (20) to evaluate
the forecasting performance, where the statistical significance is determined by the upper-tail p-value for the Clark and West (2007) statistic. To adjust
for the serial correlation, we use 2∗h − 1 as the number of Newey–West lags when calculating the Clark and West (2007) t statistic, following Bekaert and
Hoerova (2014). The mean (% bound) denotes the average percentage of unconstrained forecasts truncated by the corresponding lower bound. *, **, and
*** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. The OOS period is from February 2001 to June 2019.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Panel A: h = 3 Panel B: h = 6 Panel C: h = 12

Variable UC LBM LBCL CT0 UC LBM LBCL CT0 UC LBM LBCL CT0

DP −4.75 −3.76 −3.90 −4.77 −3.38 −4.07 −3.83 −3.38 −6.06* −6.49* −7.15* −6.06*
DY −1.78 −1.28 −1.97 −1.78 0.61 −0.21 −0.14 0.61 0.73* −0.34* −0.82* 0.73*
EP −15.94 −1.13* −1.79 −1.26* −31.47 0.33** 2.16** −7.21 −44.29 −9.52 −4.39* −19.44
DE −38.29 −11.31 −11.91 −12.50 −95.11 −48.21 −45.94 −58.05 −157.72 −151.96 −146.53 −157.57
RVOL −1.97 0.17 −0.16 −1.47 −4.93 3.77 6.54* −3.04 −15.19 0.06 6.96* −10.14
BM −9.60 −10.85 −11.72 −10.94 −12.22** −15.57 −14.92 −15.41 −36.17** −44.34** −43.84** −41.97**
NTIS −7.90 −1.15 −1.54 −1.87 −15.68 5.64** 7.52** 1.68* −29.30 19.81** 23.18*** 13.04*
TBL −19.39 −10.92 −11.37 −12.90 −48.87 −26.95 −24.39 −35.80 −150.28 −129.59 −124.03 −138.99
LTY −4.24 3.94* 3.39 1.78* −11.16 11.61*** 13.31*** 4.16* −28.88 16.07*** 20.20*** 0.34
LTR −1.38 1.04 0.72 −1.05 −0.41 6.49** 9.28** 0.08 −0.83 6.05* 12.37* −0.83
TMS −14.23 −10.04 −10.32 −12.32 −37.89 −27.46 −24.31 −35.92 −78.93 −75.44 −70.14 −78.93
DFY −24.19 2.45 1.92 2.64 −79.37 10.05*** 11.72** 6.85* −73.74 15.25** 18.51** 6.80
DFR −5.20 −1.97 −2.13 −3.76 −3.71 3.48 5.98* −2.18 −4.04 5.13 11.12* −2.62
INFL −3.78 0.65 0.45 −3.22 0.19 6.22** 8.45** 0.37* −1.63 5.04 10.33* −1.55
EconComb −2.69 2.01 1.68 0.87 −5.15 8.10** 10.30** 0.79 −1.65 4.77 9.56* −1.64

Mean (R2
OOS) −10.36 −2.81 −3.24 −4.17 −23.24 −4.45 −2.55 −9.76 −41.87 −23.03 −18.98 −29.25

Mean (% bound) - 24.78 28.19 10.14 - 24.14 30.22 10.12 - 22.32 31.78 8.54
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Table 4: Economic value of predictability: CER gains

This table presents the OOS asset allocation performance measured by the annualized CER gain (in percent) for a mean–variance investor. Each period,

the investor optimally allocates a portion ωt = 1
γ

r̂t+1|t
σ̂2
t+1|t

of her wealth to the market index and the remainder of the wealth to the risk-free asset, where γ is

the risk aversion coefficient set to three, r̂t+1|t is the forecast of t+ 1 market index excess return conditional on either a constrained predictive regression or
an unconstrained predictive regression at time t, and σ̂2

t+1|t is the forecast of t + 1 market index excess return variance made by a simple univariate AR(1)
model at time t. The optimal weight ωt is restricted to the range between zero and 1.5. The forecast horizon h coincides with the investor’s rebalancing
frequency. The annualized CER gain (in percent) reported in columns (2), (5), and (8) is defined as the difference between the CER for the investor using an
unconstrained predictive regression (UC) excess return forecast based on the predictors in the first column and the CER when the investor uses the historical
mean benchmark forecast. The difference between two CER gains reported in the columns (3), (4), (6), (7), (9), and (10), is defined as the difference between
the CER gain for the investor using the predictive regression forecast constrained by Martin (2017) (CYL) lower bound on the market excess return, LBM
(LBCL), and the CER gain when she uses an unconstrained predictive regression forecast. The statistical significance of the difference between two CER
gains is determined by the upper-tail p-value for the Diebold and Mariano (1995) statistic. *, **, and *** indicate statistical significance at the 10%, 5%,
and 1% levels, respectively. The OOS period is from February 2001 to June 2019.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Panel A: h = 1 ∆CER gain(%) Panel B: h = 3 ∆CER gain(%) Panel C: h = 6 ∆CER gain(%)

Variable UC LBM − UC LBCL− UC UC LBM − UC LBCL− UC UC LBM − UC LBCL− UC

γ = 3

DP 3.63 −0.36 −0.39 1.94 −0.35 −0.40 0.67 −0.19 −0.41
DY 4.11 −0.37 −0.38 2.82 −0.52 −0.76 0.90 −0.28 −0.43
EP 3.49 −0.03 −0.05 2.50 −0.07 −0.11 1.33 0.38 0.54
DE 1.27 0.02 0.03 −0.07 0.14 0.14 −1.76 1.16** 1.46*
RVOL −0.48 0.66 0.80 −0.88 0.60 0.74 −0.28 0.69* 1.00*
BM 1.20 0.48 0.60 2.56 −0.22 −0.22 5.07 −0.53 −0.54
NTIS −2.90 2.05** 2.48** −0.66 0.84 0.97 2.10 −0.18 −0.19
TBL −0.72 1.30 1.42 −0.68 1.11** 1.20* −0.81 1.05** 1.28*
LTY 1.37 1.24 1.25 1.83 1.01* 1.01 2.45 0.36 0.37
LTR −0.40 1.25* 1.42* 0.22 0.36 0.41 −0.55 1.04** 1.42**
TMS −0.04 0.67 0.68 −1.45 0.80* 0.95 −1.51 1.03** 1.49**
DFY 0.27 0.90 1.12 1.35 0.00 0.08 2.40 −0.51 −0.48
DFR −1.19 1.24* 1.46* −0.84 0.62 0.75 −0.55 1.00** 1.55**
INFL −2.96 1.74** 2.00** 0.09 0.19 0.19 0.08 0.19* 0.32
EconComb 1.08 0.92 1.07 1.00 0.49 0.64 1.03 0.91** 1.11*

Mean 0.52 0.78 0.90 0.65 0.33 0.37 0.71 0.41 0.57
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Table 5: Economic value of predictability: Sharpe ratios

This table presents the OOS asset allocation performance measured by the annualized Sharpe ratio for a
mean–variance investor who uses a constrained predictive regression excess return forecast or an uncon-
strained one or the historical average benchmark forecast (HAV) to guide allocations between the market
index and risk-free assets. UC denotes the case in which the investor uses the unconstrained predictive
regression, that is, forecasts generated by Eq. (14); LBM denotes the case in which the investor uses the
predictive regression constrained by Martin’s (2017) lower bound on the market excess return; and LBCL
denotes the case in which the investor uses the predictive regression constrained by CYL’s lower bound on
the market excess return. The risk aversion coefficient of the investor is set at three and the market index
weight is restricted to range between zero and 1.5. The forecast horizon h coincides with the investor’s
rebalancing frequency. The annualized SR value reported in the second through seventh columns is defined
as the average excess return of a portfolio divided by the standard deviation of the portfolio returns. The
statistical significance of whether the SR of the constrained model (LBM and LBCL) is higher than the un-
constrained model (UC) is assessed by the test of Jobson and Korkie (1981) with the correction of Memmel
(2003). The OOS period is from February 2001 to June 2019.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Panel A: h = 1 Panel B: h = 3 Panel C: h = 6

Variable UC LBM LBCL UC LBM LBCL UC LBM LBCL

HAV 0.47 - - 0.45 - - 0.32 - -
DP 0.71 0.67 0.67 0.56 0.54 0.53 0.40 0.39 0.38
DY 0.74 0.71 0.70 0.62 0.58 0.57 0.41 0.40 0.39
EP 0.79 0.75 0.73 0.71 0.67 0.66 0.45 0.48 0.48
DE 0.58 0.56 0.56 0.44 0.45 0.44 0.19 0.28** 0.31*
RVOL 0.43 0.48 0.49 0.37 0.42 0.43 0.29 0.36* 0.39*
BM 0.55 0.58 0.58 0.62 0.60 0.60 0.67 0.63 0.63
NTIS 0.19 0.40** 0.43** 0.44 0.50 0.50 0.59 0.52 0.50
TBL 0.40 0.50 0.51 0.39 0.47* 0.48* 0.27 0.35** 0.36*
LTY 0.59 0.67 0.66 0.64 0.72 0.70 0.54 0.56 0.55
LTR 0.43 0.53* 0.54 0.47 0.50 0.50 0.27 0.36** 0.39**
TMS 0.46 0.51 0.51 0.32 0.39* 0.40 0.21 0.29** 0.32**
DFY 0.51 0.57 0.58 0.63 0.59 0.59 0.59 0.50 0.49
DFR 0.36 0.46* 0.48* 0.37 0.42 0.43 0.27 0.36** 0.41**
INFL 0.21 0.36** 0.38** 0.46 0.47 0.47 0.34 0.35 0.36
EconComb 0.57 0.63 0.63 0.53 0.57 0.58 0.41 0.48** 0.49*

Mean 0.50 0.56 0.56 0.50 0.53 0.52 0.39 0.42 0.43
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Table 6: Forecasting performance of LBM and LBCL

This table presents the OOS forecasting results at the h-month horizon when directly using the option-
implied lower bounds derived by Martin (2017) and CYL, respectively, to forecast the expected market
premium, that is, r̂t→t+h|t = LBMt→t+h|t or LBCLt→t+h|t. Panel A reports the R2

OOS statistic calculated
by Eq. (20), where the statistical significance is determined by the upper-tail p-value for the CW statistic.
Panel B reports the annualized CER gain (in percent) and the annualized Sharpe ratio for a mean–variance
investor with a risk aversion coefficient of three who uses LBM (LBCL) to forecast the excess returns on
the market index to guide asset allocation. The forecast horizon h coincides with the investor’s rebalancing
frequency. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively. The
OOS period is from February 2001 to June 2019.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A: R2

OOS(%)

Variable h = 1 h = 3 h = 6 h = 12

LBM 0.13 1.95 7.94** 14.35*
LBCL −0.29 1.68 10.38** 20.19**

Panel B: Asset allocation (γ = 3)

h = 1 h = 3 h = 6

CER gain(%) SR CER gain SR CER gain SR

LBM −0.35 0.53 −0.89 0.46 0.01 0.38
LBCL −0.04 0.53 −0.49 0.47 0.61 0.41
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Table 7: Prediction of the gap between LBCL and the realized return

This table reports the in-sample estimation results of the multivariate predictive regression for the bound
gap. Specifically, the gap between the bound and the realized excess return (in percent) is regressed on the
11 predictors of Welch and Goyal (2008):

rt→t+h − LBCLt→t+h = α+ β′Xt + εt→t+h, t = 1, ..., N − h and h = 1, 3, 6, 12,

where Xt denotes the 11 standardized GW predictors (excluding DY, DE, and TMS, for collinearity), rt→t+h
is the realized excess return, and LBCLt→t+h is the CYL’s lower bound. The t-statistic of the β̂ estimate for
testing H0 : β = 0 against HA : β 6= 0 is obtained, with heteroskedasticity- and autocorrelation-consistent
standard errors based on Newey and West (1987). We use 2∗h−1 as the number of Newey–West lags. *, **,
and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively, according to two-sided
p-values. The sample period is from January 1996 to June 2019.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
h = 1 h = 3 h = 6 h = 12

β̂ t-Stat β̂ t-Stat β̂ t-Stat β̂ t-Stat

DP 1.98*** 4.89 5.16*** 5.42 8.55*** 5.03 16.28*** 9.41
EP 0.39 0.86 −0.45 −0.47 −1.91 −1.42 0.85 0.42
RVOL 0.80** 2.20 1.99** 2.46 2.13 1.47 1.23 0.51
BM −0.76 −1.27 −0.25 −0.23 1.43 1.06 −2.16 −0.90
NTIS 1.29** 2.30 4.00*** 2.98 7.83*** 3.71 14.04*** 3.73
TBL 1.23** 2.24 4.35*** 2.63 7.88** 2.55 8.13** 2.15
LTY −1.86*** −2.72 −5.36*** −2.81 −8.66*** −2.63 −10.65** −2.38
LTR 0.32 0.86 −0.71 −1.32 −0.89* −1.77 −1.42** −1.97
DFY −0.82 −1.37 −2.67*** −2.75 −3.50** −2.41 −1.78 −0.53
DFR 0.59 1.31 0.13 0.21 0.31 0.55 0.77 0.93
INFL 0.58** 2.02 0.10 0.19 −0.57 −0.88 −0.01 −0.01

Adj. R2(%) 11.64 29.72 49.63 60.66
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Table 8: Out-of-sample R2 over good and bad economic times

This table presents the monthly OOS forecasting results for the constrained and unconstrained predictive
regression models over good and bad times of the economy. UC denotes the unconstrained predictive
regression, that is, forecasts generated by Eq. (14); LBM denotes the predictive regression constrained
by Martin’s (2017) lower bound on the market excess return; LBCL denotes the predictive regression
constrained by CYL’s lower bound on the market excess return; and CT0 denotes the constrained predictive
regression with Campbell and Thompson (2008) non-negativity restriction on equity premium forecasts.
The row labeled Bound reports the results for directly using the option-implied lower bounds to forecast the
expected market premium. We use the R2

OOS statistic calculated by the following equation to evaluate the
forecasting performance over good and bad times:

R2
OOS,c = 1−

∑N−1
t=n1

Ict+1(rt+1−r̂Model
t+1|t )2∑N−1

t=n1
Ict+1(rt+1−r̂Bench

t+1|t )2
, for c = GOOD, BAD,

where IGOODt+1 (IBADt+1 ) is set equal to one whenever the CFNAI is positive (negative) in month t + 1, and
zero otherwise. The statistical significance is determined by the upper-tail p-value for the Clark and West
(2007) statistic. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
The OOS period is from February 2001 to June 2019.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A: Bad times Panel B: Good times

Variable UC LBM LBCL CT0 UC LBM LBCL CT0

DP −3.04 −3.22 −4.08 −2.63 6.05*** 7.18*** 7.97*** 6.05***
DY −2.00 −2.55 −3.28 −2.01 7.07*** 8.40*** 9.18*** 7.07***
EP −2.24 −0.78 −1.89 2.35*** −5.74 −1.06* −0.03* −5.49
DE −7.24 −4.39 −5.54 −0.95 −4.04 1.85 3.00 −3.40
RVOL −0.49 −2.07 −3.04 −0.26 −0.02 3.33* 4.30* −0.02
BM −0.96 −2.13 −3.01 −0.66 −10.83 −5.48 −4.42 −9.70
NTIS −0.07 −2.25 −3.04 −0.04 −6.65 1.50 2.77 −3.32
TBL −3.80 −5.05 −6.06 −2.52 −5.19 4.05** 5.18** −2.42
LTY −0.62 −0.85 −1.95 1.66** −3.66 5.29*** 6.44** −1.65
LTR −1.04 −1.51 −2.54 −0.45 −1.12 3.26* 4.51* −0.81
TMS −1.82 −4.02 −5.17 −1.14 −4.84 1.77 2.95 −4.17
DFY −2.80 −1.84 −2.80 1.12* −5.73 4.74** 5.90** −1.49
DFR −5.86 −6.35 −7.08 −5.02 −1.00 3.47* 4.50* −0.73
INFL −0.22 −3.61 −4.54 −1.12 −3.10 3.04* 4.20* −1.80
EconComb 0.18 −1.03 −2.08 1.13** −0.99 3.41* 4.72** −0.99

Mean −2.14 −2.78 −3.74 −0.70 −2.65 2.98 4.08 −1.52

Bound - −0.67 −1.68 - - 2.49* 3.82* -
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Table 9: Return predictability under slope restriction: R2
OOS

This table presents the OOS forecasting results at the h-month horizon for the constrained predictive re-
gression models. The term LBM + slp. denotes the constrained predictive regression that first introduces
the slope constraint following Campbell and Thompson (2008) and then bounds the forecasts from below
using Martin’s (2017) lower bound on the market premium; LBCL+ slp. denotes the constrained predictive
regression that first introduces the slope constraint and then bounds the forecasts from below with CYL’s
lower bound on the market premium; and CT0 + slp. denotes the constrained predictive regression with
both slope and non-negativity restriction, as in Campbell and Thompson (2008). We use the R2

OOS statistic
calculated by Eq. (20) to evaluate the forecasting performance, where the statistical significance is deter-
mined by the upper-tail p-value for the Clark and West (2007) statistic. We use 2∗h − 1 as the number of
Newey-West lags. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively.
The OOS period is from February 2001 to June 2019.

(1) (2) (3) (4) (5) (6) (7)
Panel A: h = 1 Panel B: h = 3

Variable LBM + slp. LBCL+ slp. CT0 + slp. LBM + slp. LBCL+ slp. CT0 + slp.

DP −0.59 −1.03 −0.40 −3.76 −3.90 −4.77
DY 0.22 −0.12 0.32 −1.28 −1.97 −1.78
EP −0.85 −1.42 0.43** −1.19* −1.84 −0.60**
DE −2.86 −3.42 −2.26 −11.36 −11.82 −13.43
RVOL −0.64 −1.12 0.02 0.32 −0.02 −0.42
BM −2.98 −3.37 −2.81 −10.85 −11.72 −10.94
NTIS −0.36 −0.86 0.00 1.18 0.96 0.00
TBL −2.80 −3.27 −2.44 −11.10 −11.39 −12.26
LTY 0.07 −0.42 0.43* 2.19 1.92 1.04**
LTR −0.17 −0.62 0.14 1.20 0.95 −0.59
TMS −2.41 −2.99 −1.68 −9.80 −10.06 −10.81
DFY −0.42 −0.91 −0.06 1.18 0.96 0.00
DFR −3.72 −4.04 −3.71 1.17 0.86 −0.44
INFL −0.80 −1.27 −0.50 0.66 0.48 −3.14
EconComb −0.08 −0.53 0.12 0.29 0.01 −1.37

Mean −1.23 −1.69 −0.83 −2.74 −3.11 −3.97
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Table 10: Return predictability with lower and upper constraints: R2
OOS

This table presents the OOS forecasting results at the h-month horizon for the constrained and unconstrained
predictive regression models. UC denotes the unconstrained predictive regression, that is, forecasts generated
by Eq. (14); LB + UB denotes the predictive regression constrained by CYL’s lower and upper bounds on
the market excess return, that is, forecasts generated by Eq. (18). We use the R2

OOS statistic calculated
by Eq. (20) to evaluate the forecasting performance, where the statistical significance is determined by the
upper-tail p-value for the Clark and West (2007) statistic. *, **, and *** indicate statistical significance at
the 10%, 5%, and 1% levels, respectively. The OOS period is from February 2001 to June 2019.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
h = 1 h = 3 h = 6 h = 12

Variable UC LB + UB UC LB + UB UC LB + UB UC LB + UB

DP −0.74 −0.09 −4.75 0.30 −3.38 8.28* −6.06* 20.96**
DY 0.30 0.52 −1.78 1.33 0.61 9.32* 0.73* 21.19**
EP −3.12 0.34 −15.94 2.73 −31.47 11.09** −44.29 19.59**
DE −6.43 −0.11 −38.29 1.48 −95.11 9.32** −157.72 17.73**
RVOL −0.37 −0.62 −1.97 0.70 −4.93 7.86* −15.19 16.83**
BM −3.46 −0.54 −9.60 1.43 −12.22** 11.94** −36.17** 21.20**
NTIS −1.74 −0.98 −7.90 0.84 −15.68 10.52** −29.30 22.27**
TBL −4.15 −0.47 −19.39 1.45 −48.87 9.50** −150.28 19.29**
LTY −1.39 0.29 −4.24 2.87 −11.16 12.43** −28.88 21.64**
LTR −1.06 −0.17 −1.38 0.89 −0.41 9.66** −0.83 18.36**
TMS −2.58 −0.24 −14.23 0.82 −37.89 8.39** −78.93 18.59**
DFY −3.54 −0.34 −24.19 2.04 −79.37 12.11** −73.74 20.68**
DFR −4.63 −1.27 −5.20 −0.66 −3.71 8.01* −4.04 17.71**
INFL −0.95 −0.77 −3.78 1.85 0.19 10.87** −1.63 19.68**
EconComb−0.12 −0.23 −2.69 1.48 −5.15 10.26** −1.65 19.54**

Mean −2.27 −0.31 −10.36 1.30 −23.24 9.97 −41.87 19.68
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Table 11: Combining with the option-based predictors: R2
OOS

This table presents the OOS forecasting results at the h-month horizon for the constrained and unconstrained
predictive regression models. The term UC denotes the unconstrained predictive regression, LBM denotes
the predictive regression constrained by Martin’s (2017) lower bound on the market excess return, and LBCL
denotes the predictive regression constrained by CYL’s lower bound on the market excess return. We use
the R2

OOS statistic calculated by Eq. (20) to evaluate the forecasting performance, where the statistical
significance is determined by the upper-tail p-value for the Clark and West (2007) statistic. We use 2∗h− 1
as the number of Newey–West lags. The mean (% bound) denotes the average percentage of unconstrained
forecasts truncated by the corresponding lower bound. *, **, and *** indicate statistical significance at the
10%, 5%, and 1% levels, respectively. The OOS period is from February 2001 to June 2019.

(1) (2) (3) (4) (5) (6) (7)
Panel A: h = 1 Panel B: h = 3

UC LBM LBCL UC LBM LBCL

VRP 4.50** 1.28 0.53 6.73** 5.26** 3.48*
VIX2 −2.91 −1.12 −1.43 −15.69 −7.01 −5.48
IVS −3.30 −1.98 −2.67 −0.66* −4.57 −6.08
FVF −0.16 0.92 0.36 −6.84 0.99 1.09
FSF −0.78 0.46 0.36 −6.58 0.84 0.85
OptionComb 2.69** 0.57 −0.07 7.33** 2.92 2.07

Mean (R2
OOS) 0.01 0.02 −0.49 −2.62 −0.26 −0.68

Mean (% bound) - 38.61 41.40 - 41.17 45.51

Panel C: h = 6 Panel D: h = 12

UC LBM LBCL UC LBM LBCL

VRP 3.29** 9.62** 9.86** −0.61* 8.39* 12.05**
VIX2 −2.17 1.84 5.43* −4.92 3.99 10.79*
IVS −10.91* 8.27** 8.63** −21.89 9.41** 12.91**
FVF −5.74 6.79** 9.16** −6.89 7.04* 12.83**
FSF −2.79 8.46** 10.66** −3.78 7.94** 13.71**
OptionComb 5.44* 8.45** 9.67** −1.46 7.26* 12.85**

Mean (R2
OOS) −2.15 7.24 8.90 −6.59 7.34 12.52

Mean (% bound) - 33.72 42.82 - 26.43 38.81
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Table 12: Alternative risk aversion coefficient: CER gains

This table presents the OOS asset allocation performance measured by the annualized CER gain (in percent) for a mean–variance investor with a risk aversion
coefficient of five. The way to construct the market timing portfolio based on forecasts generated by constrained and unconstrained predictive regressions
is described in Table 4. The annualized CER gain (in percent) reported in columns (2), (5), and (8) is defined as the difference between the CER for the
investor using an unconstrained predictive regression (UC) excess return forecast based on the predictors in the first column and the CER when the investor
uses the historical mean benchmark forecast. The difference between the two CER gains reported in columns (3), (4), (6), (7), (9), and (10) is defined as
the difference between the CER gain for the investor using the predictive regression forecast constrained by the lower bound of Martin (2017) (CYL) on the
market excess return, LBM (LBCL), and the CER gain when the investor uses an unconstrained predictive regression forecast. The statistical significance
of the difference between the two CER gains is determined by the upper-tail p-value for the Diebold and Mariano (1995) statistic. *, **, and *** indicate
statistical significance at the 10%, 5%, and 1% levels, respectively. The OOS period is from February 2001 to June 2019.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Panel A: h = 1 ∆CER gain(%) Panel B: h = 3 ∆CER gain(%) Panel C: h = 6 ∆CER gain(%)

Variable UC LBM − UC LBCL− UC UC LBM − UC LBCL− UC UC LBM − UC LBCL− UC

γ = 5

DP 2.58 −0.21 −0.23 1.07 −0.21 −0.24 −0.98 −0.11 −0.25
DY 2.93 −0.22 −0.22 1.94 −0.32 −0.46 −0.32 −0.17 −0.26
EP 2.66 −0.02 −0.03 2.01 −0.03 −0.05 0.82 0.25 0.35
DE −0.39 0.02 0.02 −1.91 0.09 0.09 −2.82 0.70** 0.88*
RVOL −0.78 0.40 0.48 −0.89 0.36 0.44 0.01 0.42* 0.62*
BM 0.46 0.29 0.36 1.74 −0.13 −0.12 3.73 −0.33 −0.33
NTIS −1.97 1.23** 1.49** −0.51 0.51 0.59 1.09 −0.10 −0.10
TBL −1.28 0.78 0.85 −1.26 0.67** 0.73* −2.20 0.63** 0.77*
LTY 1.39 0.75 0.76 1.66 0.62* 0.62 1.70 0.23 0.24
LTR −0.32 0.75* 0.85* 0.19 0.22 0.25 −0.32 0.64** 0.87**
TMS −0.97 0.41 0.41 −2.58 0.48* 0.57 −2.56 0.61** 0.89**
DFY 0.05 0.54 0.67 0.85 0.00 0.05 1.57 −0.30 −0.28
DFR −1.18 0.75* 0.88* −0.84 0.38 0.45 −0.59 0.61** 0.94**
INFL −2.10 1.05** 1.21** −0.29 0.12 0.12 −0.46 0.12* 0.20
EconComb 0.61 0.56 0.64 0.75 0.30 0.39 0.85 0.56** 0.69*

Mean 0.11 0.47 0.54 0.13 0.20 0.23 −0.03 0.25 0.35
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Table 13: Alternative sample training period: R2
OOS

This table presents the OOS forecasting results at the h-month horizon for the constrained and unconstrained
predictive regression models. The first OOS forecast starts at 96 months after the sample beginning. The
variable UC denotes the unconstrained predictive regression; LBM denotes the predictive regression con-
strained by Martin’s (2017) lower bound on the market excess return; LBCL denotes the predictive regression
constrained by CYL’s lower bound on the market excess return; and CT0 denotes the constrained predictive
regression with Campbell and Thompson (2008) non-negativity restriction on equity premium forecasts. We
use the R2

OOS statistic calculated by Eq. (20) to evaluate the forecasting performance, where the statistical
significance is determined by the upper-tail p-value for the Clark and West (2007) statistic. We use 2∗h− 1
as the number of Newey-West lags. *, **, and *** indicate statistical significance at the 10%, 5%, and 1%
levels, respectively. The OOS period is from February 2004 to June 2019.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A: h = 1 Panel B: h = 3

Variable UC LBM LBCL CT0 UC LBM LBCL CT0

DP −3.57 −2.78 −3.35 −3.16 −12.38 −9.86 −9.84 −12.38
DY −2.34 −2.00 −2.52 −2.24 −8.53 −7.02 −7.84 −8.53
EP −8.43 −3.45 −4.16 −2.44 −30.56 −6.43 −7.15 −7.83
DE −5.71 −0.99 −1.70 0.58 −33.20 1.51 0.53 1.11
RVOL −0.36 −1.41 −2.10 −0.12 −1.86 −0.85 −1.52 −1.65
BM −1.24 −1.04 −1.67 −0.78 −2.32 −1.39 −2.43 −2.32
NTIS −1.57 −1.68 −2.11 −1.09 −7.11 −1.21 −1.73 −2.03
TBL −0.78 −0.64 −1.31 0.07 −3.01 1.90 1.12 0.69
LTY −0.61 −0.32 −1.02 0.40 −2.51 2.53 1.72 1.07
LTR −0.87 −0.94 −1.59 −0.77 −1.69 0.78 0.16 −1.25
TMS −0.57 −1.03 −1.71 −0.26 −2.05 0.53 −0.06 −0.97
DFY −4.04 −0.83 −1.43 0.45 −32.69 0.60 −0.19 1.74
DFR −4.10 −3.58 −4.03 −3.15 −7.55 −3.25 −3.63 −5.39
INFL −1.03 −2.63 −3.18 −1.77 −3.04 0.56 0.20 −3.04
EconComb −0.43 −0.83 −1.49 0.44 −3.81 1.46 0.74 1.05

Mean −2.38 −1.61 −2.22 −0.92 −10.15 −1.34 −2.00 −2.65

Panel C: h = 6 Panel D: h = 12

UC LBM LBCL CT0 UC LBM LBCL CT0

DP −14.64 −14.64 −13.65 −14.64 −32.28 −32.28 −32.11 −32.28
DY −10.19 −10.19 −9.52 −10.19 −23.99 −23.99 −23.16 −23.99
EP −57.19 −6.10 −3.23 −17.45 −85.97 −28.90 −21.26 −43.90
DE −52.61 7.78* 10.46* −3.56 −0.04 7.69 14.84* 0.19
RVOL −4.17 2.48 6.00 −4.17 −16.81 −7.50 1.53 −16.81
BM 0.60** 2.82** 4.43** 0.60** −23.79** −22.21** −19.55** −23.79**
NTIS −19.89 5.12* 8.13* −1.43 −61.01 8.98 15.62* −4.86
TBL −3.86 9.44** 12.36** 0.60 6.16** 14.46*** 20.92** 6.17**
LTY −5.44 10.59*** 12.90** 2.21 −14.39 13.01** 18.37** −4.55
LTR −0.69 7.17* 10.53* −0.24 −0.59 8.57* 16.33* −0.59
TMS −2.42 5.90 9.67* −2.31 5.93** 9.85** 16.76** 5.93**
DFY −102.18 7.79* 10.14* 4.37 −71.58 12.21* 16.22* 4.22
DFR −5.78 2.24 5.48 −4.37 −4.27 8.27* 15.46* −2.18
INFL 1.58*** 8.69** 11.51** 1.79*** 1.38** 10.43* 17.04* 1.51**
EconComb −6.18 9.23** 11.73** 1.74 3.31** 12.03** 18.40** 3.31**

Mean −18.87 3.22 5.79 −3.14 −21.20 −0.63 5.03 −8.78
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Figure 1: Option-implied bounds

Figure 1 plots the term structure of the option-implied bounds. The variable LBM is the lower bound on

the expected market premium proposed byMartin (2017), and LBCL and UBCL are the lower and upper

bounds, respectively, on the expected market premium proposed by CYL. All observations are taken from

month-end data, and the sample period is from January 1996 to June 2019. The shaded area corresponds

to the NBER recession period.
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Figure 2: Monthly OOS forecasts constrained by LBM

Figure 2 plots the time series of the one-month-ahead (h = 1) OOS forecasts based on a set of representative

predictors used in the analysis and the equal-weighted forecast combination. The variable UC denotes the

unconstrained forecasts, LBM −C denotes the forecasts constrained by Martin’s (2017) lower bound on the

market risk premium, and HistMean denotes the historical mean benchmark forecasts. The OOS period is

from February 2001 to June 2019. The shaded area corresponds to the NBER recession period.
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Figure 3: Monthly OOS forecasts constrained by LBCL

Figure 3 plots the time series of the one-month-ahead (h = 1) OOS forecasts based on a set of representative

predictors used in the analysis and the equal-weighted forecast combination. The variable UC denotes the

unconstrained forecasts, LBCL−C denotes the forecasts constrained by CYL’s lower bound on the market

risk premium, and HistMean denotes the historical mean benchmark forecasts. The OOS period is from

February 2001 to June 2019. The shaded area corresponds to the NBER recession period.
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Figure 4: Cumulative CER gains over monthly asset allocation

Figure 4 depicts the cumulative CER gain (CCERG) for a mean–variance investor with a risk aversion

coefficient of three over the OOS asset allocation period, based on constrained and unconstrained predictive

regression forecasts, relative to the asset allocation strategy based on historical mean benchmark forecasts.

The realized CER gain scaled by the length of the OOS period up to month t is defined as

CCERGmodel,t = 1
N−n1

∑t
τ=n1+1(CERmodel,τ − CERbench,τ ), t = n1 + 1, ..., N,

where model denotes either the constrained or the unconstrained predictive regression model, bench is the

historical mean benchmark model, N − n1 is the number of OOS observations, and CERM,τ is the CER

gain realized at time τ , which can be calculated as

CERM,τ = rp,τ − γ
2 (rp,τ − µ̄p)2, for M = model or bench

where rp,τ is the portfolio return at time τ , γ is the investor’s risk aversion coefficient and, µ̄p is the mean

portfolio return over the OOS period. The variable UC denotes the unconstrained model, and LBM − C
and LBCL−C denote the predictive regression forecasts constrained by the lower bounds of Martin (2017)

and CYL on the market risk premium, respectively. The OOS period is monthly (h = 1), from February

2001 to June 2019. The shaded area corresponds to the NBER recession period.
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Figure 5: Forecast correlation with LBCL

Figure 5 plots the increment of R2
OOS (vertical axis) against the correlation (horizontal axis) of the un-

constrained predictive regression OOS forecasts, based on the 14 predictor variables from Welch and Goyal

(2008) with CYL’s lower bound on the market premium, LBCL. The straight line is the optimal fit obtained

by the OLS method, and h denotes the forecast horizon: monthly (h = 1), quarterly (h = 3), semi-annual

(h = 6), and annual (h = 12). The OOS period is from February 2001 to June 2019.
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Figure 6: Monthly forecast variances and squared forecast bias: LBCL

Figure 6 plots the OOS forecast variance (vertical axis) against the logarithm of the squared forecast bias

(horizontal axis) at the monthly forecast horizon (h = 1). The variable UC corresponds to the unconstrained

predictive regression, and LBCL denotes the constrained counterpart using CYL’s (2020) lower bound on

the market premium. The OOS period is from February 2001 to June 2019.
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Figure 7: Semi-annual forecast variances and squared forecast bias: LBCL

Figure 7 plots the OOS forecast variance (vertical axis) against the logarithm of the squared forecast bias

(horizontal axis) at the semi-annual forecast horizon (h = 6). The variable UC corresponds to the uncon-

strained predictive regression, and LBCL denotes the constrained counterpart using CYL’s lower bound on

the market premium. The OOS period is from February 2001 to June 2019.
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Appendices

The appendix presents the descriptions of 14 return predictors used in the empirical

analyses, as well as the computing procedures of several identities used to construct the

option-implied bounds on the market risk premium.

A Return predictors

• Dividend–price ratio (DP): Difference between the logarithm of the one-year moving sum of dividends

paid on the S&P 500 index and the logarithm of stock prices (S&P 500 index).

• Dividend yield (DY): Difference between the logarithm of dividends and the logarithm of lagged stock

prices.

• Earnings–price ratio (EP): Logarithm of earnings minus the logarithm of prices, where earnings are

the 12-month moving sums of earnings on the S&P 500 index.

• Dividend payout ratio (DE): Difference between the logarithm of dividends and the logarithm of

earnings.

• Stock variance (RVOL): 12-month moving standard deviation estimator of S&P 500 index returns

(Mele, 2007)

• Book-to-market ratio (BM): Ratio of the book value to the market value for the Dow Jones Industrial

Average.

• Net equity expansion (NTIS): Ratio of the 12-month moving sums of net issues by stocks listed on

the New York Stock Exchange divided by these stocks’ total end-of-year market capitalization.

• Treasury bill rate (TBL): Interest rate on a three-month Treasury bill of the secondary market.

• Long-term yield (LTY): Long-term government bond yield.

• Long-term rate of returns (LTR): Return on long-term government bonds.

• Term spread (TMS): Difference between LTY and the Treasury bill rate.

• Default yield spread (DFY): Difference between the yields of corporate bonds rates BAA and AAA.

• Default return spread (DFR): Difference between long-term corporate bond and long-term government

bond returns.

• Inflation (INFL): Consumer Price Index (all urban consumers), which is released in the following

month. We use the lagged one-month form for inflation, to take its release into account.
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B Risk-neutral variance of the market return

The lower bound on the expected market excess return derived by Martin (2017) is

fully characterized by the conditional risk-neutral market variance. Therefore, to compute

the risk-neutral variance of the simple market return in Eq. (2), we follow the CBOE’s

procedures to find K0, defined as the first strike below the forward index level, and we use

the spanning formula of Carr and Madan (2001) and Bakshi, Kapadia, and Madan (2003):

V arQt [RM,t→T ] =
2Rf,t→T

S2
t

{∫ K0

0

Pt,T (K)dK +

∫ ∞
K0

Ct,T (K)dK

}
− (

K0

St
−Rf,t→T )2, (A.1)

where St is the spot price of the market index, Rf,t→T is the gross risk-free rate, K0 is the

first strike below the forward index level, Ct,T (K) is the price of the call option expiring at

time T with strike K, and Pt,T (K) is the price of the put option expiring at time T with

strike K. Then, we utilize a discretized version of Eq. (A.1) to compute the risk-neutral

variance:

V arQt [RM,t→T ] ≈ 2Rf,t→T

S2
t

{ ∑
Ki≤K0

Pt,T (Ki)∆I(Ki) +
∑
Ki>K0

Ct,T (Ki)∆I(Ki)

}
+ res, (A.2)

where res = −(K0

St
−Rf,t→T )2 and ∆I(Ki) is the interval between strike prices, defined as

∆I(Ki) =
Ki+1 −Ki−1

2
. (A.3)

Note that ∆I(K) for the lowest (highest) strike price is the difference between the lowest

(highest) strike and the next higher (lower) strike.

C Risk-neutral moments of the market return

The lower bound on the expected market excess return derived by Chabi-Yo and Loudis

(2020) depends on the risk-neutral market variance, as well as higher-order moments. Sim-

ilarly, we use the spanning formula of Carr and Madan (2001) and Bakshi, Kapadia, and
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Madan (2003) to compute the risk-neutral nth moment of the market return in Eq. (9):

M
Q(n)
t→T = EQ

t [(RM,t→T −Rf,t→T )n]

=
n(n− 1)Rf,t→T

S2
t


∫ K0

0
(K
St
−Rf,t→T )n−2Pt,T (K)dK

+
∫∞
K0

(K
St
−Rf,t→T )n−2Ct,T (K)dK

+ εn,
(B.1)

where εn is the adjustment term corresponding to the risk-neutral nth moment,

εn = −(n− 1)(
K0

St
−Rf,t→T )n. (B.2)

Then, we utilize a discretized version of Eq. (B.1) to compute the risk-neutral nth moment:

M
Q(n)
t→T ≈

n(n− 1)Rf,t→T

S2
t


∑

Ki≤K0
(K
St
−Rf,t→T )n−2Pt,T (Ki)∆I(Ki)

+
∑

Ki>K0
(K
St
−Rf,t→T )n−2Ct,T (Ki)∆I(Ki)

+ εn, (B.3)

where εn is defined by Eq. (B.2) and ∆I(Ki) is defined by Eq. (A.3).

D Truncated risk-neutral moments

The upper bound on the expected market excess return derived by Chabi-Yo and Loudis

(2020) is based on the truncated risk-neutral moments of the market excess return. According

to Appendix B of Chabi-Yo and Loudis (2020), the truncated risk-neutral nth moment in

Eq. (11) is calculated as

M
Q(n)
t→T [k0] = EQ

t [(RM,t→T −Rf,t→T )n1RM,t→T≤k0 ]

= (k0 −Rf,t→T )nProbQt [ST ≤ k0St]− n(k0 −Rf,t→T )n−1
Rf,t→T

St
Pt,T [k0St]

+
n(n− 1)Rf,t→T

S2
t

∫ Stk0

0

(
K

St
−Rf,t→T )n−2Pt,T (K)dK,

(C.1)

where k0 is a prespecified level of the gross return (k0 = 0.85 in our paper), ProbQt [·] is the

risk-neutral probability, and Pt,T [k0St] is the price of the put option expiring at time T with

strike k0St. We calculate the cumulative risk-neutral probability at k0St as

ProbQt [ST ≤ k0St] = 1+Rf,t→T
∂C

∂K

∣∣∣
K=k0St

≈ 1+
Ct,T (k0St + ∆K)− Ct,T (k0St −∆K)

2∆K

, (C.2)
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where ∆K is the interval between strike prices. Then, we utilize a discretized version of Eq.

(C.1) to compute the truncated risk-neutral nth moment:

M
Q(n)
t→T [k0] ≈ (k0 −Rf,t→T )nProbQt [ST ≤ k0St]− n(k0 −Rf,t→T )n−1

Rf,t→T

St
Pt,T [k0St]

+
n(n− 1)Rf,t→T

S2
t

∑
Ki≤k0St

(
Ki

St
−Rf,t→T )n−2Pt,T (Ki)∆I(Ki),

(C.3)

where ∆I(Ki) is defined by Eq. (A.3).
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Online Appendices

This online appendix presents the supplementary results for the paper “Out-of-Sample Equity

Premium Prediction: The Role of Option-Implied Constraints.”

A Supplementary Results
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Figure A.1: Forecast correlation with LBM

Figure A.1 plots the increment in R2
OOS (vertical axis) against the correlation (horizontal axis) of the

unconstrained predictive regression OOS forecasts based on the 14 predictor variables of Welch and Goyal

(2008) with Martin’s (2017) lower bound on the market premium, LBM . The straight line is the optimal

fit obtained by the OLS method, and h denotes the forecast horizon: monthly (h=1), quarterly (h=3),

semi-annual (h=6), and annual (h=12). The OOS period is from February 2001 to June 2019.
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Figure A.2: Monthly forecast variances and squared forecast biases: LBM

Figure A.2 plots the OOS forecast variance (vertical axis) against the logarithm of the squared forecast bias

(horizontal axis) at the monthly forecast horizon (h = 1). The variable UC corresponds to the unconstrained

predictive regression, and LBM denotes the constrained counterpart using Martin’s (2017) lower bound on

the market premium. The OOS period is from February 2001 to June 2019.
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Figure A.3: Semi-annual forecast variances and squared forecast biases: LBM

Figure A.3 plots the OOS forecast variance (vertical axis) against the logarithm of the squared forecast

bias (horizontal axis) at the semi-annual forecast horizon (h = 6). The variable UC corresponds to the

unconstrained predictive regression, and LBM denotes the constrained counterpart using Martin’s (2017)

lower bound on the market premium. The OOS period is from February 2001 to June 2019.
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Table A.1: Predicting the gap between LBM and the realized return

This table reports the in-sample estimation results of the multivariate predictive regression for bound gap.
Specifically, the gap between bound and realized excess return (in percent) is regressed on the 11 predictors
from Welch and Goyal (2008):

rt→t+h − LBMt→t+h = α+ β′Xt + εt→t+h, t = 1, ..., N − h and h = 1, 3, 6, 12,

where Xt denotes the 11 standardized GW predictors (DY, DE, and TMS are excluded for collinearity),

rt→t+h is the realized excess return, and LBMt→t+h is the Martin (2017) lower bound. The t statistic of β̂
estimate for testing H0 : β = 0 against HA : β 6= 0 is obtained with the heteroskedasticity and autocorrelation
consistent standard error based on Newey and West (1987). We use 2∗h− 1 as the number of Newey-West
lags. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels, respectively, according
to the two-sided p-values. The sample period is from January 1996 to June 2019.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
h = 1 h = 3 h = 6 h = 12

β̂ t-stat β̂ t-stat β̂ t-stat β̂ t-stat

DP 1.99*** 4.92 5.20*** 5.44 8.66*** 5.01 16.47*** 9.41
EP 0.40 0.88 −0.42 −0.44 −1.81 −1.37 1.13 0.55
RVOL 0.82** 2.25 2.08** 2.55 2.41 1.63 2.02 0.84
BM −0.77 −1.29 −0.28 −0.25 1.38 1.00 −2.19 −0.94
NTIS 1.30** 2.32 4.06*** 3.03 8.00*** 3.79 14.37*** 3.83
TBL 1.24** 2.27 4.43*** 2.68 8.12*** 2.61 8.71** 2.26
LTY −1.86*** −2.73 −5.41*** −2.85 −8.89*** −2.70 −11.28** −2.52
LTR 0.32 0.86 −0.71 −1.32 −0.88* −1.74 −1.42* −1.95
DFY −0.78 −1.30 −2.47*** −2.58 −3.03** −2.02 −0.69 −0.20
DFR 0.58 1.27 0.07 0.11 0.19 0.32 0.51 0.59
INFL 0.58** 2.00 0.07 0.15 −0.60 −0.95 −0.09 −0.10

Adj. R2(%) 11.47 29.63 49.68 61.54
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Table A.2: Out-of-sample R2 during high and low VIX periods

This table presents the monthly OOS R2 results for the constrained and unconstrained predictive regression
models during high and low VIX periods. UC denotes the unconstrained predictive regression; LBM denotes
the predictive regression constrained by Martin’s (2017) lower bound for the market excess return; LBCL
denotes the predictive regression constrained by Chabi-Yo and Loudis’s (2020) lower bound for the market
excess return; CT0 denotes the constrained predictive regression with Campbell and Thompson (2008) non-
negativity restriction on equity premium forecasts. We calculate the R2

OOS during high and low VIX periods
as:

R2
OOS,c = 1−

∑N−1
t=n1

Ict+1(rt+1−r̂Model
t+1|t )2∑N−1

t=n1
Ict+1(rt+1−r̂Bench

t+1|t )2
, for c = HIGH, LOW,

where IHIGHt+1 (ILOWt+1 ) is set equal to one whenever the month t + 1 VIX level is above (below) the sample
mean and zero otherwise. The statistical significance is determined by the upper-tail p-value for the Clark
and West (2007) statistic. *, **, and *** indicate statistical significance at the 10%, 5%, and 1% levels,
respectively. The OOS period is from February 2001 to June 2019.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Panel A: High VIX Panel B: Low VIX

Variable UC LBM LBCL CT0 UC LBM LBCL CT0

DP −3.64 −3.42 −4.04 −3.21 6.27*** 6.24*** 6.23*** 6.27***
DY −1.96 −2.09 −2.59 −1.97 5.75*** 5.81*** 5.84*** 5.75***
EP −2.65 0.60 −0.23 2.30*** −4.25 −4.36 −4.29 −4.31
DE −8.25 −3.25 −4.13 −1.37 −2.04 −1.75 −1.57 −2.04
RVOL 0.45 −0.21 −1.00 0.69* −2.36 −1.88 −1.61 −2.36
BM −3.64 −3.41 −4.00 −3.27 −3.03 −1.94 −1.84 −2.15
NTIS 2.09 −0.96 −1.61 1.53 −10.95 −2.13 −1.47 −6.66
TBL −5.46 −3.89 −4.63 −3.19 −1.00 0.02 0.18 −0.82
LTY −2.75 −0.16 −0.99 0.36 1.89** 2.80** 2.97** 1.95**
LTR −1.18 −0.48 −1.19 −0.57 −0.75 0.13 0.29 −0.49
TMS −2.64 −2.85 −3.71 −1.70 −2.43 −1.84 −1.68 −2.41
DFY −3.90 0.00 −0.78 1.36* −2.68 −0.60 −0.15 −1.71
DFR −5.87 −4.92 −5.43 −4.89 −1.65 −1.32 −1.07 −1.64
INFL 2.04* −1.30 −2.06 0.72 −8.16 −3.44 −2.98 −6.16
EconComb −0.14 0.12 −0.58 0.86 −0.07 0.05 0.16 −0.07

Mean −2.50 −1.75 −2.46 −0.82 −1.70 −0.28 −0.07 −1.12
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