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VPIN, Jump Dynamics, Inventory Announcements in 
Energy Futures Markets 

	  
	  

Abstract 
	  

The Volume-Synchronized Probability of Informed Trading (VPIN) metric is proposed by 
Easley et al. (2011, 2012) as a real-time measure of order flow toxicity in an electronic trading 
market. This paper examines the performance of VPIN around inventory announcements and 
price jumps in crude oil and natural gas futures markets with a sample period from January 2009 
to May 2015. We have obtained several interesting results: (1) VPIN increased significantly 
around the inventory announcements with price jumps (scheduled events) and at jumps not 
associated with any scheduled announcements (unscheduled events). (2) VPIN did not peak prior 
to the events but shortly after. (3) A minor variation of VPIN based on exponential smoothing 
significantly improved the early warning signal property of VPIN. Moreover, this estimate of 
toxicity returns faster to the pre-event level. (4) In general, the VPIN estimate of the toxicity 
level is higher in natural gas futures than in crude oil futures during our sample period. 
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1 Introduction 

High frequency trading (HFT) accounts for a major portion of trading volume in the U.S. equity 

and futures markets. In electronic limit order markets, there are no designated market markers, 

and liquidity arises endogenously from the orders submitted by HFT and non-HFT market 

participants. Technological advances in computation and communication allow HFT traders to 

play a crucial role in liquidity supply and demand in the trading environment. For example, 

Hendershott et al. (2011) present empirical evidence that algorithmic trading improves liquidity 

for large stocks; and Hasbrouck and Saar (2013) analyze low-latency activity and find that HFT 

improves market quality measures such as liquidity in the limit order book. Brogaard et al. 

(2014) provide evidence that HFT trading accelerates price efficiency and provision of liquidity 

at stressed times such as during the most volatile days. This literature focuses primarily on 

normal market conditions. 

It has been recognized that when HFT participants have significant exposure to large 

downside market moves and if the toxicity increases, they may become liquidity consumers 

rather than providers or even abandon market-making activities. This will result in illiquid 

markets and induce an increase in short term price volatility.1 Easley et al. (2011, 2012) present 

the Volume Synchronized Probability of Informed Trading (VPIN) metric as a real-time 

indicator for measuring “order flow toxicity” faced by market makers in HFT trading 

environments. The order flow is regarded as toxic when market makers face strong adverse 

selection risk. They may be unaware of when such market conditions arise resulting in them 

providing liquidity at a loss. Hence, market markers’ estimate of the real time-varying toxicity 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1	  May	   6,	  2010,	   the	   s o -‐ c a l l e d 	   market	  flash	   crash,	  is	   an	   example	  (see	   Kirilenko	  et	   al.	   (2015)	   and	   Easley	  et	   al.	  
(2012)).	  
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level becomes a crucial factor to managing their liquidity provision. VPIN is a timely new 

innovation developed to meet the demand to measure the order flow toxicity for market makers, 

exchanges and regulators.  Easley et al. (2012) have successfully demonstrated that VPIN 

reached the highest level of order flow toxicity in E-mini futures contracts two hours prior to the 

so-called flash crash on May 6, 2010. They also provided evidence that VPIN achieved very high 

levels (the cumulative distribution function (CDF) of VPIN was equal or greater than 0.9) on 

May 5, 2011, when speculators unwound their large speculative positions in WTI crude oil 

futures. The unwinding of massive positions led them to seek liquidity, and as market makers 

realized that the selling pressure was persistent, they started to withdraw, which in turn increased 

the high level of order flow toxicity. Andersen and Bondarenko (2014, 2015), conversely, 

documented in their empirical investigation that VPIN is a poor predicator of short-run volatility, 

and that VPIN did not reach an all-time high prior to the flash crash on May 6 but rather 

following the event. They suggest that the predictive power of VPIN is mainly due to a 

mechanical relationship with underlying trading intensity. In a rejoinder, Easley et al. (2014) 

point out there is a confusion with the analysis Andersen and Bondarenko (2014) carry out 

explaining the contradictory conclusion. Wu et al. (2013) analyze five and half years of data 

from the 100 most liquidity futures contracts traded worldwide in major exchanges. Their test 

results confirm that VPIN is a strong predictor of liquidity-induced volatility. With selection of 

parameter choices, the false positive rates are about 7% averaged over all futures contracts in 

their data set. When the CDF of VPIN rises above 0.99, the volatility in the subsequent time 

windows is higher than 93% on average. Using 120 stocks in NASDAQ for 2008 and 2009, 

Yildiz et al. (2013) document that the order flow toxicity in volume bucket 𝜆 − 1 is positively 

related to the volatility in bucket 𝜆 even after controlling for trade intensity variables. Cheung et 
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al. (2015) study the behavior of VPIN around the mandatory call events of callable bull/bear 

option contracts at the Hong Kong Option Exchange. They conclude that high VPIN around 

mandatory call events indicates the existence of large volume imbalances. 

In short, there is an ongoing debate on the predictive power of VPIN and future liquidity-

induced short run volatility.2 In general, most previous literature assesses the usefulness of VPIN 

as a signal for order flow toxicity at a selected single trading day events such as the May 6 

market flash crash.3 

Observers of energy futures markets have long noted that energy futures prices are very 

volatile and often exhibit jumps (price spikes) at inventory news releases. The theory of storage 

(see Kaldor (1939), Working (1948, 1949), Brennan (1958), Telser (1959) and others) 

demonstrates that the level of inventory is one of major factors determining spot and futures 

prices of consumption-based commodities.4 Volatility behavior of energy futures prices has been 

investigated by Mu (2007), Chan et al. (2010) and others. Mu (2007) finds that extreme weather 

conditions and low inventories are important factors affecting natural gas futures volatility within 

a single equation model with a GARCH error process. Chen et al. (2010) studies the common 

jump dynamics in natural gas futures and spot markets within a bivariate autoregressive jump 

intensity GARCH framework. They particularly examine the role of weather as a short-run 

demand factor and inventory as a short-run supply factor in explaining price spikes and time 

varying volatility in spot and futures returns.  

Previous papers examining price behavior and volatility surrounding inventory 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2	  For other empirical works related to using VPIN refer to Wei et al. (2013) and others.	  
3	  See	  Easley	  de	  Prado	  and	  O’Hara	  (2012)	  
4	  Crude	  oil	  and	  natural	  gas	  are	  classified	  as	  consumption-‐based	  commodities.	  Furthermore,	  we	  should	  mention	  
that	  convenience	  yield	  has	  an	  inverse	  relationship	  with	  level	  of	  inventory.	  	  
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announcements of energy stocks include Linn and Zhu (2004), Gay, Simkins and Turac (2009), 

Bjursell et. al (2015). Linn and Zhu (2004) report an increase in volatility before and after the 

release of inventory reports by the Energy Information Administration. Gay, Simkins and Turac 

(2009) demonstrate that one percent unexpected increase in natural gas inventory results in an 

approximately one percent drop in the natural gas price. Furthermore, they provide evidence that 

prices react most strongly to forecasts of analysts with better prior forecast accuracy. Bjursell et. 

al (2015) apply nonparametric methods to identify jumps in futures prices and intraday jumps 

surrounding inventory announcements of crude oil, heating oil and natural gas contracts traded 

on the New York Mercantile Exchange with a sample period of intraday data from January 1990 

to January 2008. They obtained several interesting empirical results. (1) Large volatility days are 

often associated with large jump components and large jump components are often associated 

with the Energy Information Administration’s inventory announcement dates. (2) The volatility 

jump component is less persistent than the continuous sample path component. (3) Volatility and 

trading volume are higher on days with a jump at the inventory announcement than on days 

without a jump at the announcement. Furthermore, the intraday volatility returns to normal faster 

following inventory announcements with jumps than after announcements without jumps. Based 

on previous results, we can expect that the order flow becomes more toxic due to high volatility 

and trading volume during inventory announcement periods. Therefore,	  we have an ideal 

empirical test setting for examining the performance of VPIN as a real-time indicator of order 

flow toxicity and early warning indicator for market turbulence around repetitive scheduled 

information and liquidity events. 

The major purposes of this paper are twofold: (1) We examine the behavior of VPIN around 

inventory announcements with price jumps (scheduled events) and price jumps not associated 
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with scheduled events in crude oil and natural gas futures markets during a recent sample period 

spanning from January 1, 2009 to May 31, 2015; and (2) we propose a minor variation of VPIN 

by applying exponential smoothing in the last stage of the calculation. We believe this will 

increase the sensitivity of VPIN to capture recent order flow toxicity. We have obtained several 

interesting results: 

1. VPIN estimates increase significantly around the inventory announcements period with price 

jump (scheduled events) as well as at jumps not associated with any inventory 

announcements (unscheduled events).5 

2. VPIN does not peak prior to the scheduled inventory announcements but rather after these 

events. 

3. In general, the values of VPIN in natural gas futures are higher than the VPINs in crude oil 

futures during our sample period. These results are consistent with previous finding by 

Bjursell et. al (2015) that volatility in natural gas futures are higher than volatility in crude oil 

futures. 

4. A minor variant of VPIN with exponential smoothing significantly improves the early 

warning signals property of the VPIN and the modified VPIN estimate returns faster to 

normal levels after the events. 

5. The updated version of VPIN proposed in this paper outperforms VPIN in temporal linkages 

between toxicity and short-term volatility in terms of alternative correlation measures and a 

conditional probabilities framework. 

The organization of the paper is as follows. Section 2 presents the empirical methodology on 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
5	  Unscheduled events refer to jumps which cannot be associated with any event listed in Bloomberg’s economic 
calendar.	  
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identification of intraday price jumps and estimation of the VPIN metric. Section 3 discusses 

inventory announcements, the contract specifications and the data. Section 4 presents empirical 

results. We conclude the paper in Section 5. 

2 Empirical Methodology 

This section consists of two parts. Section 2.1 presents the statistical procedure used to identify 

the intraday timing of price jumps. Section 2.2 describes the computational algorithm of 

Volume-Synchronized Probability of Informed Trading (VPIN) metric proposed by Easley et al. 

(2012) (ELO) and a new proposed minor variation of the metric. 

2.1 Asset Price Dynamics and Jumps Statistics 

Let 𝑋! = log 𝑆! denote the logarithmic price where 𝑆! is the observed price at time t. Assume that 

the logarithmic price process follows a continuous-time diffusion process 𝑋! coupled with a 

discrete process defined as, 

d𝑋! = 𝜇!d! + 𝜎!d𝑊! + 𝜅!d𝑞!  (1) 

where 𝜇! is the instantaneous drift process and 𝜎! is the diffusion process; 𝑊!  is the standard 

Wiener process; d𝑞! is a Poisson jump process with intensity 𝜆!, that is P d𝑞! = 1 = 𝜆!d!; and 

𝜅! is the logarithmic size of the price jump at time t if a jump occurred. If 𝑋!! denotes the price 

immediately prior to the jump at time t, then 𝜅 = 𝑋! − 𝑋!!. 

We use a nonparametric test developed by Lee and Mykland (2008), which identifies the 

significant intraday jump returns and thus provides the intraday arrival time, realized size and 

direction of jumps. The test statistic is applied to the intraday continuous returns, 𝑟!!, by 
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comparing their magnitude to the local variation (or instantaneous volatility) of the return 

process at time 𝑡!. Specifically, the realized intraday return is compared to an estimate of the 

instantaneous volatility of the price process observed immediately prior to the tested return, 𝑟!!. 

Lee and Mykland (2008) suggest estimating the volatility by using a variation of the realized 

bipower variation, (see Barndorff-Nielsen and Shephard (2004) and (2006)), 

𝐵𝑉! =
!
!

!!
!!!!

𝑟!! 𝑟!!!!
!!
!!! ,   (2)	  

 which is robust to jumps. The jump detection statistic is calculated as 𝐿!! = 𝑟!!𝜎!!
!! where 

𝜎!!
! = 𝐾 − 2 !! 𝑟!! 𝑟!!!!

!!!
!!!!!!! . Hence, the volatility is estimated based on the K intraday 

returns preceding 𝑟!!where a sufficiently large window size is chosen so that the impact from 

previous jumps is minimized. Lee and Mykland (2008) report that there exists a range of values 

of K such that larger values only make a marginal contribution. The appropriate choice of K 

depends on the sampling interval. We apply the statistic to five-minute intraday returns, and 

follow the recommendation by Lee and Mykland (2008) and calculate the statistic based on the 

past 270 returns.  

Lee and Mykland (2008) obtain a rejection region by deriving the limiting distribution of the 

maximum of the statistic under the null hypothesis of no jump. The statistic is calculated as (|Lt| 

− Cn) /Sn where, 

𝐶! =
! !"#!

!
!

!
− log 𝜋 + log log 𝑛 2𝑐 2 log 𝑛 ! ! ,   (3) 

𝑐 =    2/ 𝜋 and 𝑆! = 1/ 𝑐(2 log𝑛)!/! . The cumulative distribution function is derived as, 

𝑃 𝜉 ≤ 𝑥 = 𝑒!!!!. Thus, for a given significance level, we can solve for X to determine the 
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threshold for significant jumps. We report empirical results for the one percent significance 

level. Hence, we reject the null hypothesis of no jump for values of the maximum statistic larger 

than β0.01 = − log (− log (0.99)) = 4.60. 

2.2 VPIN Metric 

Volume-Synchronized Probability of Informed Trading (VPIN) is calculated following the 

algorithm described in Easley et al. (2012) and Abad and Yagüe (2012), and outlined here. 

1. Time bars: Initially, trades are aggregated based on one-minute intervals into time bars. 

We also produce results based on ten-second intervals. The trade volume is aggregated 

per time bar and the closing price is recorded in order to calculate the return per time bar. 

The overnight return is omitted; instead, the open to close return is used for the first time 

bar per day. The trade activity within the time bar is then treated as if the contracts were 

traded at the closing price and thus have the same return. 

2. Volume buckets and bulk classification: A volume bucket is obtained by adding trading 

volume from consecutive time bars until the total volume reaches the volume bucket size 

(VBS). Hence, depending on the trade activity, a volume bucket may require multiple 

time bars or just a fraction of one time bar. The remaining trades from a time bar are 

applied to the subsequent volume bucket. VBS is set to the average number of daily 

traded contracts divided by 50 following ELO’s work.6 

3. The trade direction is then determined per time bar in probabilistic terms where the buy 

volume is obtained by multiplying the trade volume by Z (∆P /σ∆P) where σ∆P denotes 

the standard deviation of all price changes for the whole sample. Similarly, the sell 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6	  The	   results	  reported	  are	   based	  on	  using	   the	   daily	  average	  across	  the	   whole	   sample.	  We	  also	   divided	  the	  
sample	  into	   two	   subsets	  and	   updated	  the	   VBS	   based	  on	   these	   but	   obtained	  qualitatively	  analogous	  results.	  
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volume is given by the volume multiplied by 1 − Z (∆P /σ∆P). The order imbalance, OI!, 

is then calculated as the absolute difference between buy and sell volumes. 

4. Finally, VPIN is calculated based on n consecutive volume buckets and is given by	  

OI!!
!!!
nVBS

       (3)	  

The time series of VPIN estimates are obtained using a moving window of volume 

buckets. That is, the first VPIN is calculated using the volume buckets [1, n]. The next 

estimate is based on [2, n + 1] and so on.	  

We can rewrite the VPIN equation (3) as follows, 

VPIN =    !
!

!
!!!

OI!
!"#

	  	  	  	  	  (4)	  

From equation (4), we see that VPIN is based on a simple moving average with equal weight 

(1/n) given to current and past observations. VPIN is designed to have a forecasting property; 

thus it may be desirable to give more weight to recent observations in order to capture newly 

arrived information. For this reason, we propose to use an exponential weighted moving average 

to calculate VPIN instead of a simple moving average with equal weights. The VPIN with 

exponential smoothing, EXPS_VPINα, where α is the smoothing constant is described as 

follows. Let, 

𝑣! =
!"!
VBS

 ,        (5) 

EXPS_VPINα=0.1 is then defined as, 

EXPS_VPIN!,! = 𝛼𝜐! + (1− 𝛼)EXPS_VPIN!,!!!	  	  	  	  	  (6) 

Given a moving window of size n, the initial value of EXPS_VPINα is then based on the first n 

values of  𝜈!. We need to select the smoothing constant α. The higher value of α, the more 
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weight is given to the current and most recent observations.7 In this paper, we specify α=0.1 

(EXPS_VPINα=0.1) and a moving window of n = 50 observations to calculate VPIN. 

3 Contract Specifications, Data and Inventory Announcements 

3.1 Contract Specifications and Data 

We examine price series for two contracts from the U.S. energy futures markets. The contracts 

are on natural gas and crude oil which are traded on the New York Mercantile Exchange 

(NYMEX). 

The futures contract on crude oil began trading in 1983. The contract calls for delivery of 

both domestic as well as international crude oils of different grades in Cushing, Oklahoma. The 

contract, which is listed nine years forward, trades in units of 1,000 U.S. barrels (42,000 gallons) 

and is quoted in U.S. dollars and cents per barrel. 

The natural gas futures contract began trading on April 3, 1990 and is based on delivery at 

the Henry Hub in Louisiana.8 The contract trades in units of 10,000 million British thermal units 

(mmBtu) and is quoted in dollars and cents per mmBtu. Contracts are traded for about thirteen 

years forward (the current calendar year plus the next twelve years). Appendix A.I presents 

detailed specifications for these contracts. 

The price series range from January 1, 2009 to May 31, 2015. Each transaction includes a 

date and time stamp and the transaction price. Since January 31, 2007, the trading hours have 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
7	  Further discussions on exponential smoothing moving average procedures and the statistical properties are 
referred to in Brown (1962), Chatfield et al. (2001) and Diebold (2007). 
	  
8	  The natural gas futures contract is commonly cited as the benchmark for the spot market, which accounts for 
nearly 25 percent of the energy consumption in the U.S. 
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been set at 9:00 AM to 2:30 PM. The contracts began trading electronically via the Globex 

trading platform in the spring of 2007. The electronic trading became consistently higher than pit 

trading around September of 2007 for these contracts, and has since remained the predominant 

trading platform. Hence, we use prices from this platform. The electronic trading takes place 

from 6:00 PM to 5:45 PM the following day; however, for consistency we consider only the 

transactions for the same hours during which the pit trading takes place as this is the most liquid 

time. Furthermore, we use the data series from nearby contract months. During the maturity 

month, we shift to the first deferred contract month, using the daily trade volume as the switch 

indicator. The data are filtered to limit any biased results due to illiquid trading. 

3.2 Inventory Announcements 

EIA releases weekly reports on the inventory status of crude oil and natural gas. Since 2003, a 

smaller version of the inventory report for crude oil with highlights and summarizing tables is 

released at 10:30 AM on Wednesdays; a full report is published after 1:00 PM on the same day. 

The EIA also compiles and releases a weekly natural gas storage report with estimates of natural 

gas in underground storage. EIA releases the report at 10:30 AM on Thursdays.9 

Data on the market’s expectation on the weekly changes in inventories in these commodities 

are obtained from Bloomberg, who reports weekly surveys of market analysts’ forecasts of the 

inventory levels. The reports include statistics such as mean, median, low and high values of the 

forecasts where the number of analysts ranges from fifteen to thirty for these commodities. The 

surveys also include actual inventory levels and, hence, allow us to obtain the surprise at time t 

defined as the difference between the actual value, At, and the consensus forecast, Ft, where the 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
9	  Further discussion on the inventory reports is referred to EIA’s website: http://www.eia.doe. 
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median is chosen as the forecast. Since small differences between actual and forecast values can 

be expected without materially impacting the market, we focus on significant surprises, which 

we define as surprises larger than one standard deviation, σt (i.e., standard deviation of the 

differences between actual and forecast values). To compare the size of surprises across 

products, we define standardized surprises as, 

!!!!! !!!"#$,!
!!

       (7)	  

where µsurp,t is the mean of the differences between actual and forecast. 

4 Empirical Results 

Section 4.1 reports summary statistics of VPIN, and the time series behavior of VPIN and price 

returns over the sample period. Section 4.2 documents the toxicity metrics’ behavior on a 

particular day, and their properties around price jumps at inventory announcements and jumps 

not associated with any scheduled event. We examine temporal linkages among toxicity, 

liquidity and return volatility in Section 4.3 

4.1 Exploratory Data Analysis 

Figure 1 plots daily time series of VPIN and daily continuous returns for crude oil (Panel A) and 

natural gas (Panel B). The black lines are the continuous returns based on close to close prices. 

The green lines denote the daily VPIN represented by the last VPIN estimate per day. The time 

series suggest that higher values of VPIN can often be associated with volatile market 

conditions. 

[Insert Figure 1] 
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Table 1 summarizes the number of trading days with significant positive and negative jumps 

per year, and shows that (1) natural gas futures have a greater number of jumps than crude oil 

futures; and (2) there are more negative than positive jumps in both commodities. These 

empirical results are consistent with empirical results reported by Bjursell et al. (2015) using 

sample data from 1990 to January 2008. 

[Insert Table 1] 

Table 2 reports statistical properties of VPIN and EXPS_VPINα=0.1 for crude oil and natural 

gas futures for the complete sample period and two sub periods. Results denoted by 

EXPS_VPINa are based on the sample period from 2009 to 2011 and EXPS_VPINb from 2012 to 

2015, May 31. Based on skewness and kurtosis values, we reject that VPIN and its variants have 

a normal distribution. The result of the Augmented Dickey-Fuller test confirms that they are 

stationary time series. We also include the 0.1, 0.25, 0.5, 0.75 and 0.9 percentiles of the 

empirical distributions of VPIN and EXPS_VPINα=0.1. Comparing EXPS_VPINα=0.1,a and 

EXPS_VPINα=0.1,b show that the distributions have been relatively stable over time. Furthermore, 

VPIN is higher for natural gas as well as more volatile. 

[Insert Table 2] 

Table 3 reports the average number of contracts traded for crude oil and natural gas futures 

for the whole sample period and two the sub periods. We observe that both contracts have been 

more actively traded over the last three years as indicated by the increased average daily trading 

volume. Following Easley et al. (2012), we set the daily number of volume buckets to 50. That 

is, the volume buckets size (VBS) is equal to average daily volume divided by 50. VBS has 

increased in both commodities over the latter half of the sample data. Nevertheless, the main 
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conclusions henceforth do not change based on whether the empirical analysis is based on the 

VBS on all data or updated per subset. We only include analysis based on the whole sample to 

preserve space. 

[Insert Table 3] 

4.2 The Behavior of VPIN around News Events and Price Jumps 

In this section we first examine VPIN versus EXPS_VPINα=0.1 on May 5, 2011, for crude oil 

futures. Easley et al. (2011) analyzed VPIN’s behavior on this day when there was a large selling 

pressure due to market participants taking profits. Table 4 presents details of the behavior of the 

intraday returns, VPIN, EXPS_VPINα=0.1 and ECDF(VPIN) and ECDF(EXPS_VPINα=0.1) for 

this day. Figure 2 plots the intraday dynamics of VPIN and EXPS_VPINα=0.1 for May 5, 2011, in 

the crude oil market. 

[Insert Table 4 and Figure 2] 

We observe that the intraday returns (continuous line in the top panel) starts falling shortly 

after the open but initially at a relatively slow pace. Around 10:40AM, the return begins to drop 

faster and continues to drop until 11:12AM, after which the price stabilizes for a while and even 

increases a bit before dropping for the remainder of the day. Referring to the level and ECDF of 

EXPS_VPINα=0.1 (dashed lines in the middle and bottom panels), the toxicity starts increasing 

rapidly around 10:15AM and peaks around 10:55AM. At this time the futures markets is 

dropping quickly but has yet to drop 2% in the next 15 minutes and 4% for the day; hence 

EXPS_VPINα=0.1 provides an indication to widen bid-asks spreads significantly or even get out of 

the market. While both VPIN and EXPS_VPINα=0.1 start increasing rapidly shortly before 11AM, 
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EXPS VPINα=0.1 increases faster by putting more weight on more recent observations. EXPS 

VPINα=0.1 peaks for the day at around 11:15AM whereas VPIN peaks around 12:00AM. In short, 

we find that EXPS VPINα=0.1 significantly improves the early warning signals in comparison 

with VPIN for crude oil futures on May 5, 2011. 

[Insert Table 4 and Figure 2] 

Next, we broaden the analysis by looking at the behavior and predictive power of	 VPIN 

versus EXPS_VPINα=0.1 to detect adverse conditions at inventory releases. In particular, we test 

whether VPIN on average increases prior to these events conditioned on significant jumps and 

surprises in the announcement. We use a one-way analysis of variance regression model to 

estimate the mean behavior of VPINs around inventory announcements with negative jumps, 

VPIN!,! = 𝛽! + 𝛽!𝐷!!∈! + 𝜖 ,	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  (8)	  

The dependent variable VPINi,k is the ith VPIN estimate associated with the kth event. Since 

VPIN estimates occur asynchronously, they are indexed in order relative to the timing of the 

event. The dummy variable Dj is equal to one for the jth VPIN observation where j =-19,…, -

1,1,…,60 and zero otherwise. That is, we include 20 VPIN estimates prior to the event and 60 

following the event where D−1 and D1 are associated with the VPIN estimates just prior to and 

after the event. D20 serves as the benchmark assumed to be absent any information about the 

content of the event; hence, the value of D20 is the intercept in the regression. We include 60 

subsequent observations since VPIN is calculated based on a moving window with 50 

observations. 

Table 5 presents the regression results for crude oil and natural gas for the scheduled event 

when the inventory report is released. We only consider cases with a surprise in the forecast 
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greater than one standard deviation and a negative and significant jump at the time of the release. 

There are three sets of results per commodity. Column I gives the results for the original VPIN 

calculation using a simple average based on the 50 past observations. Columns II and III report 

estimates using exponential moving average with smoothing parameter α set to 0.05 and 0.10. 

Panels A (crude oil) and C (natural gas) in Figure 3 plot the mean values (coefficient of intercept 

+ coefficient of dummy variable) of VPIN, EXPS_VPINα=0.05 and EXPS_VPINα=0.1. 

Table 6 documents the results of the regression model for VPIN versus EXPS_VPINα=0.05 

and EXPS_VPINα=0.1 at jumps which are not associated with any inventory reports. The time 

series behavior of the mean values of VPIN, EXPS_VPINα=0.05, and EXPS_VPINα=0.1 derived 

from the regression coefficients reported in Table 6 are plotted in Panels A (crude oil) and C 

(natural gas) in Figure 4. 

Table 7 reports estimates from the regression model, equation 8, with the empirical 

cumulative densities (ECDF) of VPIN, EXPS_VPINα=0.05 and EXPS_VPINα=0.1 for the same 

events as considered in Table 5. Table 8 presents the equivalent results for jumps which are not 

associated with any scheduled events. Panels B and D in Figures 3 and 4 plot these estimates 

where the plotted lines are mean values of ECDF(VPIN) and ECDF(EXPS_VPINα=0.1) around 

inventory announcements derived from the regression results in Tables 7 and 8. 

Summarizing the regression results above, we first note that the values of VPIN and 

EXPS_VPINα=0.1 increased significantly around the inventory announcements period with price 

jumps (scheduled events) and jumps without inventory announcements (unscheduled events). 

These results suggest that toxicity metrics can provide a signal that order flow becomes more 

toxic around the release of new events and at price jumps. 
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	  Second, on average, VPIN and EXPS_VPINα=0.1 did not reach local maxima prior to these 

events but shortly after. Comparing the two toxicity metrics, we see that VPIN did not reach its 

highest value until around the 25th observation for crude oil after the new release with jumps 

while EXPS_VPINα=0.1 reached its highest value at the 5th observation. Furthermore, the value of 

EXPS_VPINα=0.1 is in most cases higher than VPIN prior to the events and also in a few 

instances statistically different from the benchmark value prior to the jumps in crude oil futures. 

Similar results hold for natural gas futures in Table 5 and Figure 3 as well as for price jumps 

without inventory releases reported in Table 6 and Figure 4. Thus, these empirical results support 

that EXPS_VPINα=0.1 improve on signaling for adverse order flow over VPIN. 

Third, the ECDF results from Table 7 and Panels B and D in Figure 3 corroborate the 

findings based on the level in toxicity. As ELO emphasize, it is more appropriate to refer to the 

ECDF of the toxicity metrics rather than the absolute level in toxicity to identify critical levels. 

We observe that ECDF(VPIN) never goes above 0.9 whereas ECDF(EXPS_VPINα=0.1) surpasses 

0.98 shortly after the inventory report is released. Table 8 and Panels B and D in Figure 4 for 

unscheduled events show a similar story though the ECDF values do not reach as high levels. 

In summary, we find that VPIN is a useful tool to signal periods of turbulent price behaviors 

during news releases and price jumps, but VPIN does not demonstrate its early warning signal 

property in crude oil and natural gas futures. Hence, our results are consistent with the finding of 

Andersen and Bondarenko (2014, 2015)’s assessment based on S&P 500 E-mini futures. The 

proposed variation of VPIN (EXPS_VPINα=0.1) strengthens the signal of toxicity and also returns 

faster to the normal pre-event levels following the turbulent period. 

4.3 Temporal Linkages among Toxicity, Liquidity and Return Volatility 
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It is generally agreed that as order flow toxicity increases, market makers face potential losses, 

and so may opt to reduce providing liquidity or even abandoning market-making activities. The 

ensuing reduction in liquidity in turn suggests that high levels of VPIN should signal greater 

short run volatility induced by shortage of liquidity. In this section, we follow ELO (2013)’s 

methodology to examine these temporal linkages among VPINs, liquidity and return volatility. 

As a first step, Table 9 reports Pearson correlations of rλ with the variables VPIN!!!, 

EXPS_VPIN!!!.!,!!!, RV!!! (realized volatility), NT!!! (number of traders), TS!!!(trade size) 

and BAS! (bid-ask spread). Notice that all variables but rλ and BAS!are lagged one period inλ . 

Panel A tabulates the point estimates of the Pearson correlations with the associated 95% 

confidence intervals in Panel B. We use Fisher Z-transformation to construct these confidence 

intervals10. We highlight two observations. First the point estimates of 

𝑐𝑜𝑟𝑟 EXPS_VPIN!!!.!,!!!, 𝑟!  are greater than 𝑐𝑜𝑟𝑟 VPIN!!!, 𝑟!  in both crude oil and 

natural gas futures. Furthermore, they are statistical different at the 95% level since the 

corresponding confidence intervals of 𝑐𝑜𝑟𝑟 EXPS_VPIN!!!.!,!!!, 𝑟!   and 𝑐𝑜𝑟𝑟 VPIN!!!, 𝑟!  

do not intersect. Second, corr RVλ−1, rλ( )  are greater than both   𝑐𝑜𝑟𝑟 EXPS_VPIN!!!.!,!!!, 𝑟!   

and 𝑐𝑜𝑟𝑟 VPIN!!!, 𝑟!  
 in both commodities futures. 

[Insert Table 9] 

 Since both series are auto correlated, the criterion for applying the Fisher Z-transformations 

is not fully satisfied. Hence, to further explore and validate the correlation structure, we carry out 

a pair analysis on the differences of the moving window correlations, 
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
10	  The	  rationale	  and	  the	  procedure	  of	  using	  Fisher	  Z	  transformation	  to	  construct	  confidence	  interval	  for	  non-‐zero	  
correlations	  in	  population	  is	  referred	  to	  Snedecor	  and	  Cochran	  (1980).	  
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𝑐𝑜𝑟𝑟 EXPS_VPIN!!!.!,!!!, 𝑟!  and 𝑐𝑜𝑟𝑟 VPIN!!!, 𝑟!  by employing a window length set to 

50 volume buckets. Figure 5 displays the time series behavior of the difference of the two 

moving window correlations over the sample period. The paired t test result for crude oil is 217 

with the mean difference equal to 0.12; for natural gas, the t tests is 254 and mean difference 

0.16. These results support that 𝑐𝑜𝑟𝑟 EXPS_VPIN!!!.!,!!!, 𝑟!  are statistically and significantly 

greater than ( )1,corr VPIN rλ λ−  in both futures markets.  

[Insert Figure 5] 

We apply the cross correlation technique to examine lead and lag correlations between VPIN 

and EXPS_VPINα=0.1 with rλ  at various lags inλ . The cross correlations are defined as follows: 

Cx ,y = xλ − x( ) yλ+k − y( ) / λ ,k =1,2,...50 k = −1,−2,...−50.
λ=1

λ−k

∑  

where xλ = rλ and yλ+k =VPINλ+K or , yλ+k = EXPS _VPINλ+k  

Figure 6 presents cross correlations for crude oil (Panel A) and natural gas (Panel B) between 

absolute returns and the toxicity metrics. The x-axis labels denote lags inλ between the absolute 

returns and VPIN. We draw attention to two interesting results. First, the correlation of 

EXPS_VPINα=0.1 for negative lags are greater than corresponding correlations of VPIN for first 

ten negative lags while the reverse relationship holds from the 11th and onwards in both futures 

markets. This is not surprising since EXPS_VPINα=0.1 are more sensitive to recent observations 

of volume buckets than VPIN which assigns equal weight to all buckets within the window. 

Second, the positive lags, which denote that the absolute return is lagged to VPIN 
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(EXPS_VPINα=0.1), are substantially lower than the cross correlations for negative lags. These 

results suggest that VPIN (EXPS_VPINα=0.1) plays a stronger leading indicator to absolute 

returns while the feedback effect is relatively weaker. 

[Insert Figure 6] 

Following the methodology laid out by ELO (2013), we also evaluate the temporal linkages 

between VPIN (EXPS_VPINα=0.1) and rλ in a model-free framework based on conditional 

probabilities. By obtaining conditional probabilities, we aim to answer the questions: (1) given 

high values of  VPIN!!! (EXPS_VPIN!!!.!,!!!), what is the subsequent behavior by rλ ; and (2) 

when rλ  is high, what is the probability distribution prior to that in 

VPIN!!!(EXPS_VPIN!!!.!,!!!). 

We first create a discrete joint probability distribution between rλ  and VPIN!!! 

(EXPS_VPIN!!!.!,!!!) by grouping VPINs into five-percentile bins and absolute returns rλ  in 

bins of size 0.25% up to 2%. From the discrete joint distribution, we derive the two types of 

conditional probability distributions. 

Panels A and B in Table 10 (Table 11) present 1( / )prob r VPINλ λ−  and

1, 0.1( / _ )prob r EXPS VPINλ λ α− =  for crude oil (natural gas) respectively. There are twenty 

conditional distributions for the toxicity metrics lagged by one period relative to the absolute 

value of returns. Summarizing the major findings, we first note that a low value of  VPIN!!! 

(EXPS_VPIN!!!.!,!!!) is often associated with relative high probabilities of low values of rλ . 

For example, when VPIN is in the 0.05 percentile, the probability associated with the 0-0.25% 
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bin for absolute returns is 95%, while there is a zero probability for bins of rλ greater than 1.0%. 

Second, as the value of VPIN!!! (EXPS_VPIN!!!.!,!!!) increases, the conditional distribution of 

subsequent rλ  gradually disperses across the buckets. Referring to the 0.90 percentile (Table 10 

Panel A), the probability associated with the 0.25% bin for rλ is reduced to 70.2% and the 

remaining 29.8% is distributed over larger values of absolute returns. Third, low values of 

EXPS_VPIN!!!.!,!!! are coupled with higher probabilities of low values of rλ  compared to the 

probabilities associated with VPIN!!! and rλ . Furthermore, it remains true that high values of 

EXPS_VPINα=0.1 are associated with lower probabilities of low values of rλ  as well as 

relatively high probabilities are associated with high values of rλ compared to the analogous 

relationships between VPIN!!! and rλ .  For example, looking at the results for natural gas in 

Panel A in Table 11, given the 1.00 percentile value of VPIN!!!, the associated probabilities 

with the 0.25% and 1.50% bins of absolute returns are 58.1% and 0.8 % respectively.  The 

analogous values for EXPS_VPINα=0.1 are 47.9% and 2.0% (see Panel B in Table 11). 

[Insert Table 10 and 11] 

Table 12 and 13 present 1( / )prob VPIN rλ λ−  in Panel A and 1( _ / )prob EXPS VPIN rλ λ−  in 

Panel B for crude oil and natural gas, respectively. There are nine conditional probability 

distributions for given values of rλ . Two important findings stand out. First, conditioned on the 

range 0-0.25% of rλ , the probabilities associated with prior values of VPIN!!! 

(EXPS_VPIN!!!.!,!!!) are low and dispersed nearly uniformly across the range of percentiles. 

However, for bins greater than 1.50%, the probabilities associated with VPIN percentiles less 
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than 0.5% is zero with the probabilities shifted to higher percentiles of VPINs. This pattern holds 

for both crude oil and natural gas futures. Second, for absolute value of returns in the bins 2.0% 

and 2.00%≥ , the probability associated with VPIN!!! in the 1.00 percentile are 36% and 30.8% 

while the corresponding probabilities for EXPS_VPINα=0.1 are 72.% and 69.2% for crude oil 

futures. Analogous patterns hold for natural gas futures. Accordingly, we provide evidence that 

EXPS_VPINα=0.1 has stronger temporal linkages with subsequent absolute value of returns 

compared to VPIN!!!. 

[Insert Tables 12 and 13] 

 Finally, we examine the predicative power of EXPS_VPIN!!!.!,!!!  and VPIN!!! for short-

term volatility ( rλ ) and bid-ask spreads (BAS!) in a regression framework with and without the 

control variables: number of trades (NT!!!), trade size (TS!!!) and realized volatility (RV!!!)). 

Table 14 reports six regressions of BAS! on VPIN!!!, EXPS_VPIN!!!.!,!!! and the control 

variables for crude oil (Panel A) and natural gas (Panel B) futures. We find that both VPIN!!!  

and EXPS_VPIN!!!.!,!!! have predictive power on subsequent bid-ask spreads with and without 

control variables for natural gas futures, but the coefficients of VPIN!!! and EXPS_VPIN!!!.!,!!!  

in equation I and II are incorrect and statistically significant for crude oil futures. However, the 

coefficients of these two VPINs become positive and significant with control of other variables 

in regressions for crude oil futures. 

Table 15 reports six regressions of rλ  on VPIN!!!, EXPS_VPIN!!!.!,!!! and the control 

variables for crude oil (Panel A) and natural gas (Panel B) futures. All regression coefficients are 

consistent with prior expectations and statistically significant at 1% at least. These regression 
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results provide additional evidence that both VPIN!!!and EXPS_VPIN!!!.!,!!! have predictive 

power for rλ  within the regression framework, Furthermore, we observe EXPS_VPIN!!!.!,!!! 

have stronger predicate power than VPIN!!! in terms of the magnitude of regression coefficients.  

[Insert Tables 14 and 15] 

5 Summary and Conclusions 

This paper assesses the performance of VPIN versus a variant of VPIN, (EXPS_VPIN!!!.!) 

around inventory announcements with price jumps and price jumps not associated with inventory 

announcements in crude oil and natural gas futures markets. Our sample period spans from 

January 1, 2009 to May 31, 2015. We believe that over six years of intraday sample data provide 

reliable and robust empirical results rather than relying on single day or a short time period as 

previous evaluations of the properties of VPIN have done. We obtain several interesting 

empirical results. 

First, we document that VPIN has increased significantly around the inventory 

announcements period with price jumps (scheduled events) and jumps without inventory 

announcements (unscheduled events). These results suggest that order flow gains more toxicity 

during the release of events and periods with price jumps. 

Second, we find that VPIN did not reach local maxima prior to the events but rather after the 

occurrences of the events, which is consistent with previous findings by Andersen and 

Bondarenko (2014, 2015). 

Third, in general, the values of VPIN in natural gas futures are higher than observed in crude 

oil futures market during our sample period. These results are consistent with previous findings 
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by Bjursell et al. (2015) who observed that the volatility in natural gas futures markets is higher 

than in crude oil futures markets. 

Fourth, we demonstrate that a minor variant of VPIN with exponential smoothing 

(EXPS_VPINα=0.1) significantly improves the early warning signals property of the VPIN metric 

and returns faster than VPIN to normal levels after the event time. 

Fifth, following the model free approach used by ELO (2013), we find EXPS_VPIN 

outperform VPIN in temporal linkages between toxicity and short term volatility in terms of 

alternative correlation measures and a conditional probability framework. 

In summary, the contribution of this paper is to provide large scale empirical evidence to an 

ongoing debate on the predictive power of VPIN and futures liquidity induced volatility. We find 

that VPIN is a useful tool to signal periods of turbulent price behaviors during news releases and 

price jumps, but VPIN does not demonstrate an early warning signal property in crude oil and 

natural gas futures. However, a minor variant of VPIN (EXPS_VPINα=0.1) proposed in this work, 

significantly improves the early warning signals of toxicity. Furthermore, it returns faster to the 

normal pre-event levels following the turbulent period. 
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Tables

Table 1: Yearly summary per commodity. No. Days denotes the number of days with trade data. Total
presents the number of significant jumps with the number of positive and negative jumps in the two following
columns. The time series for 2015 ends at May 31.

Crude Oil - No. Jumps Natural Gas - No. Jumps
Year No. Days Total Positive Negative Total Positive Negative
2009 258 10 7 3 34 17 17
2010 258 22 9 13 41 14 27
2011 258 18 8 10 55 24 31
2012 258 21 7 14 41 18 23
2013 258 8 2 6 46 23 23
2014 258 19 9 10 44 21 23

201505 101 7 7 0 13 5 8

Table 2: Summary statistics for VPIN and EXPS VPINα=0.10 for crude oil and natural gas futures. The third
(EXPS VPINα=0.10,a) and fourth columns (EXPS VPINα=0.10,b) per commodity are results for subsets of the
sample data using the exponential smoothing approach. EXPS VPINα=0.10,a is based on data from January
2009 to December 2011, and EXPS VPINα=0.10,b is based on data from January 2012 to May 2015. Kurtosis
denotes estimates of the excess kurtosis. AR(1) is the auto correlation for lag 1 for the VPIN time series.
ADF is the augmented Dickey-Fuller test statistic. No. Obs denotes the number of observations. The values
labelled CDF are the percentiles based on the ECDF of the VPIN values.

Crude Oil Natural Gas
VPIN EXPS VPIN EXPS VPINa EXPS VPINb VPIN EXPS VPIN EXPS VPINa EXPS VPINb

Mean 0.12 0.12 0.13 0.11 0.30 0.30 0.30 0.29
Std Dev 0.04 0.06 0.06 0.05 0.09 0.12 0.10 0.12
Skew 1.59 1.93 1.69 2.30 0.84 1.07 0.94 1.14
Kurtosis 4.34 6.81 4.95 9.93 0.99 1.37 1.13 1.38
AR(1) 0.996 0.972 0.970 0.973 0.996 0.977 0.969 0.980
ADF −26.00 −27.28 −20.99 −22.74 −29.39 −29.73 −22.57 −24.58
No. Obs 82424 82424 37850 44574 82435 82435 31635 50800
CDF(0.1) 0.08 0.07 0.08 0.06 0.19 0.17 0.19 0.16
CDF(0.25) 0.09 0.09 0.10 0.08 0.23 0.21 0.23 0.20
CDF(0.5) 0.12 0.11 0.12 0.10 0.28 0.27 0.29 0.26
CDF(0.75) 0.14 0.15 0.16 0.13 0.34 0.35 0.36 0.35
CDF(0.9) 0.18 0.19 0.21 0.18 0.41 0.45 0.44 0.47

Table 3: Statistics for the futures contracts for the full sample period (2009-2015) and the subperiods 2009-
2011 and 2012-2015. Avg Vol denotes the average daily trading volume. VBS denotes the volume bucket
size per period and commodity.

Crude Oil Natural Gas
2009-2015 2009-2011 2012-2015 2009-2015 2009-2011 2012-2015

Avg Vol 153144 149935 155982 67929 55592 78842
VBS 3063 2999 3120 1359 1112 1577

29



Table 4: The table lists intraday time series of returns, VPIN and EXPS VPINα=0.10 for crude oil on May
5, 2011. The first column lists the closing timestamps in hours and minutes of the VPIN observations.
The second column presents the intraday returns, log(pti/pti−1). The two following columns are VPIN and
EXPS VPINα=0.10. The last two columns are the ECDF(VPIN) and ECDF(EXPS VPINα=0.10). The VPIN

and EXPS VPINα=0.10 calculations are based on one-minute time bars and averaged over a window with 50
observations.

ECDF
Return VPIN EXPS VPIN VPIN EXPS VPIN

09:01 0.000 0.15 0.08 0.77 0.22
09:02 −0.000 0.14 0.11 0.73 0.48
09:03 −0.001 0.13 0.11 0.67 0.47
09:06 −0.003 0.13 0.11 0.67 0.50
09:07 −0.003 0.14 0.16 0.75 0.82
09:08 −0.002 0.13 0.15 0.65 0.75
09:11 −0.002 0.13 0.14 0.62 0.70
09:16 −0.001 0.12 0.12 0.58 0.61
09:18 0.001 0.13 0.15 0.64 0.78
09:21 0.001 0.13 0.14 0.63 0.70
09:26 0.002 0.13 0.13 0.62 0.67
09:32 0.001 0.13 0.12 0.61 0.59
09:35 −0.000 0.13 0.13 0.63 0.62
09:38 −0.001 0.13 0.12 0.64 0.61
09:45 0.000 0.12 0.12 0.58 0.59
09:50 0.000 0.12 0.11 0.56 0.49
09:55 −0.001 0.12 0.11 0.54 0.46
09:58 −0.003 0.12 0.11 0.56 0.50
10:01 −0.001 0.12 0.12 0.55 0.57
10:05 −0.000 0.12 0.12 0.53 0.55
10:11 −0.001 0.12 0.11 0.51 0.46
10:15 −0.004 0.12 0.12 0.55 0.55
10:17 −0.004 0.12 0.13 0.59 0.62
10:19 −0.004 0.12 0.12 0.56 0.60
10:21 −0.006 0.12 0.14 0.59 0.69
10:25 −0.004 0.13 0.14 0.62 0.74
10:30 −0.007 0.12 0.15 0.60 0.74
10:31 −0.006 0.13 0.16 0.63 0.80
10:35 −0.005 0.13 0.15 0.64 0.77
10:37 −0.005 0.13 0.16 0.67 0.81
10:41 −0.006 0.12 0.16 0.57 0.80
10:45 −0.006 0.12 0.15 0.59 0.77
10:50 −0.008 0.12 0.14 0.54 0.70
10:51 −0.009 0.13 0.17 0.62 0.83
10:52 −0.010 0.13 0.18 0.66 0.88
10:53 −0.011 0.13 0.19 0.68 0.90
10:54 −0.014 0.15 0.25 0.78 0.96
10:55 −0.018 0.16 0.31 0.86 0.99
10:56 −0.016 0.17 0.33 0.89 0.99
10:56 −0.016 0.18 0.35 0.91 0.99
10:57 −0.016 0.19 0.34 0.92 0.99
10:59 −0.015 0.19 0.32 0.92 0.99
11:01 −0.017 0.19 0.32 0.93 0.99
11:03 −0.019 0.20 0.31 0.94 0.99
11:05 −0.025 0.21 0.35 0.96 0.99
11:05 −0.025 0.23 0.42 0.97 1.00
11:05 −0.025 0.25 0.47 0.98 1.00
11:06 −0.025 0.25 0.44 0.98 1.00
11:07 −0.024 0.25 0.41 0.98 1.00
11:09 −0.025 0.25 0.38 0.98 1.00
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Table 4 continue

ECDF
Return VPIN EXPS VPIN VPIN EXPS VPIN

11:10 −0.025 0.25 0.34 0.98 0.99
11:11 −0.027 0.25 0.37 0.98 0.99
11:12 −0.033 0.27 0.41 0.99 1.00
11:13 −0.041 0.28 0.47 0.99 1.00
11:13 −0.041 0.29 0.52 0.99 1.00
11:13 −0.041 0.31 0.57 1.00 1.00
11:14 −0.039 0.32 0.56 1.00 1.00
11:14 −0.039 0.34 0.58 1.00 1.00
11:15 −0.035 0.34 0.61 1.00 1.00
11:16 −0.035 0.35 0.58 1.00 1.00
11:17 −0.033 0.36 0.57 1.00 1.00
11:19 −0.030 0.37 0.57 1.00 1.00
11:20 −0.028 0.37 0.54 1.00 1.00
11:22 −0.028 0.37 0.50 1.00 1.00
11:24 −0.027 0.37 0.46 1.00 1.00
11:25 −0.022 0.39 0.50 1.00 1.00
11:26 −0.024 0.39 0.46 1.00 1.00
11:28 −0.028 0.39 0.45 1.00 1.00
11:30 −0.027 0.39 0.42 1.00 1.00
11:33 −0.030 0.40 0.40 1.00 1.00
11:37 −0.026 0.40 0.39 1.00 1.00
11:40 −0.026 0.40 0.36 1.00 0.99
11:43 −0.025 0.40 0.36 1.00 0.99
11:47 −0.020 0.40 0.33 1.00 0.99
11:48 −0.019 0.41 0.36 1.00 0.99
11:49 −0.022 0.41 0.34 1.00 0.99
11:52 −0.023 0.41 0.32 1.00 0.99
11:55 −0.024 0.41 0.30 1.00 0.99
11:58 −0.029 0.41 0.32 1.00 0.99
11:59 −0.030 0.42 0.33 1.00 0.99
12:01 −0.026 0.42 0.34 1.00 0.99
12:04 −0.028 0.42 0.30 1.00 0.99
12:09 −0.028 0.42 0.28 1.00 0.98
12:13 −0.029 0.42 0.27 1.00 0.98
12:19 −0.031 0.41 0.26 1.00 0.97
12:23 −0.032 0.41 0.24 1.00 0.96
12:28 −0.028 0.40 0.23 1.00 0.95
12:35 −0.031 0.38 0.22 1.00 0.94
12:38 −0.031 0.37 0.21 1.00 0.93
12:43 −0.031 0.37 0.21 1.00 0.93
12:49 −0.031 0.36 0.19 1.00 0.90
12:53 −0.034 0.36 0.19 1.00 0.90
12:56 −0.038 0.37 0.24 1.00 0.96
12:58 −0.037 0.37 0.23 1.00 0.95
13:00 −0.037 0.36 0.22 1.00 0.94
13:04 −0.033 0.34 0.23 1.00 0.95
13:09 −0.034 0.33 0.22 1.00 0.94
13:13 −0.030 0.33 0.23 1.00 0.95
13:20 −0.031 0.33 0.21 1.00 0.93
13:27 −0.031 0.33 0.21 1.00 0.92
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Table 4 continue

ECDF
Return VPIN EXPS VPIN VPIN EXPS VPIN

13:27 −0.031 0.33 0.21 1.00 0.92
13:36 −0.036 0.33 0.19 1.00 0.90
13:39 −0.037 0.32 0.20 1.00 0.91
13:42 −0.038 0.31 0.20 1.00 0.91
13:45 −0.038 0.29 0.19 0.99 0.89
13:49 −0.038 0.27 0.17 0.99 0.86
13:51 −0.041 0.26 0.21 0.99 0.93
13:53 −0.043 0.27 0.25 0.99 0.96
13:53 −0.043 0.25 0.23 0.98 0.95
13:56 −0.046 0.24 0.22 0.98 0.94
13:57 −0.048 0.25 0.27 0.98 0.97
13:58 −0.046 0.24 0.25 0.98 0.97
14:00 −0.045 0.23 0.25 0.97 0.96
14:02 −0.044 0.23 0.24 0.97 0.96
14:04 −0.048 0.24 0.26 0.97 0.97
14:05 −0.051 0.25 0.32 0.98 0.99
14:07 −0.053 0.24 0.31 0.98 0.99
14:08 −0.051 0.25 0.33 0.98 0.99
14:09 −0.052 0.24 0.33 0.98 0.99
14:11 −0.057 0.25 0.35 0.98 0.99
14:11 −0.057 0.26 0.38 0.99 1.00
14:12 −0.053 0.26 0.37 0.99 0.99
14:13 −0.055 0.26 0.35 0.99 0.99
14:14 −0.054 0.26 0.34 0.99 0.99
14:16 −0.053 0.26 0.33 0.99 0.99
14:18 −0.054 0.26 0.33 0.98 0.99
14:20 −0.051 0.26 0.33 0.99 0.99
14:22 −0.050 0.26 0.33 0.99 0.99
14:24 −0.052 0.26 0.30 0.99 0.99
14:25 −0.054 0.27 0.33 0.99 0.99
14:27 −0.057 0.27 0.36 0.99 0.99
14:28 −0.059 0.27 0.36 0.99 0.99
14:29 −0.057 0.27 0.34 0.99 0.99
14:29 −0.057 0.28 0.36 0.99 0.99
14:30 −0.058 0.28 0.34 0.99 0.99
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Table 5: The table presents changes in VPIN surrounding the release of the inventory reports for crude oil
and natural gas. Since VPIN estimates are asynchronous, they are indexed in order relative to the timing
of the inventory release where index −1 and 1 denote the first observations immediately before and after
the release, respectively. Only events with a negative and significant jump and a surprise greater than one
standard deviation are included in the regression where 20 VPIN estimates prior to the inventory release and
60 observations following the inventory are considered. The estimates are obtained via OLS of the regression
equation,

Vt,k = β0 +
∑
i̸=l

βiDi + ϵt,k,

where Di is a dummy variable for the ith VPIN estimates. There is no dummy variable D0. The regression
table reports estimates for the dummy variables D−10 −D14 to preserve space. Regression I includes results
for VPIN; Regression II and III are results for EXPS VPINα=0.05 and EXPS VPINα=0.10 respectively. The VPIN
calculation is based on one-minute time bars. All VPIN calculations are based on a moving window with 50
VPIN observations.

Crude Oil Natural Gas
I II III I II III

Intercept 0.10 0.09 0.09 0.25 0.25 0.24
(7.64) (6.70) (4.51) (19.36) (16.88) (12.85)

D−10 −0.004 0.004 0.008 0.001 0.01 0.02
(−0.23) (0.22) (0.28) (0.06) (0.50) (0.70)

D−9 −0.004 0.004 0.007 4e − 04 0.01 0.02
(−0.23) (0.20) (0.25) (0.02) (0.49) (0.65)

D−8 −0.002 0.006 0.01 −2e − 04 0.01 0.02
(−0.11) (0.30) (0.40) (−0.01) (0.51) (0.67)

D−7 −0.002 0.008 0.02 −0.003 0.005 0.007
(−0.09) (0.43) (0.57) (−0.17) (0.26) (0.27)

D−6 −0.003 0.007 0.01 −0.006 0.001 −0.001
(−0.15) (0.36) (0.46) (−0.30) (0.05) (−0.04)

D−5 −3e − 06 0.01 0.03 −0.008 −0.004 −0.01
(−2e − 04) (0.70) (0.92) (−0.43) (−0.20) (−0.41)

D−4 5e − 05 0.01 0.02 −0.01 −0.007 −0.02
(0.003) (0.61) (0.77) (−0.52) (−0.36) (−0.62)

D−3 −0.001 0.008 0.01 −0.01 −0.01 −0.03
(−0.07) (0.39) (0.44) (−0.61) (−0.62) (−0.98)

D−2 −0.002 0.004 0.004 −0.01 −0.02 −0.03
(−0.12) (0.19) (0.15) (−0.69) (−0.78) (−1.16)

D−1 0.003 0.02 0.03 −0.009 −0.007 −0.01
(0.18) (0.96) (1.25) (−0.49) (−0.34) (−0.42)

D1 0.02 0.05 0.10 0.006 0.03 0.06
(0.98) (2.71) (3.65) (0.34) (1.37) (2.26)

D2 0.03 0.08 0.16 0.02 0.06 0.12
(1.61) (4.28) (5.69) (1.05) (2.96) (4.59)

D3 0.04 0.11 0.20 0.03 0.09 0.18
(2.27) (5.51) (7.14) (1.77) (4.37) (6.56)

D4 0.05 0.12 0.21 0.04 0.12 0.22
(2.68) (6.13) (7.70) (2.42) (5.54) (8.05)

D5 0.05 0.12 0.20 0.06 0.13 0.24
(2.77) (5.96) (7.13) (3.01) (6.43) (9.06)

D6 0.05 0.12 0.19 0.06 0.15 0.27
(2.90) (5.98) (6.88) (3.52) (7.20) (9.84)

D7 0.05 0.12 0.18 0.07 0.17 0.29
(2.91) (5.91) (6.53) (4.03) (8.02) (10.70)

D8 0.05 0.12 0.18 0.08 0.18 0.30
(2.95) (6.14) (6.62) (4.43) (8.58) (11.12)

D9 0.06 0.12 0.18 0.09 0.19 0.31
(3.13) (6.23) (6.53) (4.80) (9.14) (11.54)

D10 0.06 0.12 0.17 0.09 0.19 0.31
(3.28) (6.18) (6.25) (5.11) (9.32) (11.39)

D11 0.06 0.12 0.16 0.10 0.20 0.30
(3.36) (5.99) (5.81) (5.37) (9.54) (11.32)

D12 0.06 0.11 0.15 0.10 0.20 0.30
(3.45) (5.86) (5.47) (5.67) (9.68) (11.15)

D13 0.06 0.11 0.15 0.11 0.20 0.29
(3.57) (5.86) (5.35) (5.86) (9.65) (10.74)

D14 0.07 0.11 0.14 0.11 0.20 0.27
(3.63) (5.65) (4.95) (6.04) (9.51) (10.21)

R2 Adj 0.56 0.66 0.70 0.38 0.37 0.43
F Stat 6.08 8.82 10.32 21.29 20.29 25.78
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Table 6: The table presents changes in VPIN at jumps which are not associated with the inventory reports
for crude oil and natural gas. Since VPIN estimates are asynchronous, they are indexed in order relative to
the timing of the inventory release where index −1 and 1 denote the first observations immediately before
and after the release, respectively. Only events with a negative and significant jump and a surprise greater
than one standard deviation are included in the regression where 20 VPIN estimates prior to the inventory
release and 60 observations following the inventory are considered. The estimates are obtained via OLS of
the regression equation,

Vt,k = β0 +
∑
i̸=l

βiDi + ϵt,k,

where Di is a dummy variable for the ith VPIN estimates. There is no dummy variable D0. The regression
table reports estimates for the dummy variables D−10 −D14 to preserve space. Regression I includes results
for VPIN; Regression II and III are results for EXPS VPINα=0.05 and EXPS VPINα=0.10 respectively. The VPIN
calculation is based on one-minute time bars. All VPIN calculations are based on a moving window with 50
VPIN observations.

Crude Oil Natural Gas
I II III I II III

Intercept 0.11 0.11 0.11 0.26 0.25 0.25
(9.43) (8.98) (7.13) (17.77) (17.28) (14.15)

D−10 0.007 0.01 0.02 0.005 0.003 0.006
(0.43) (0.75) (1.17) (0.24) (0.13) (0.23)

D−9 0.008 0.01 0.03 0.004 0.004 0.008
(0.50) (0.81) (1.22) (0.22) (0.17) (0.31)

D−8 0.008 0.01 0.03 0.005 0.005 0.01
(0.52) (0.81) (1.19) (0.26) (0.24) (0.42)

D−7 0.01 0.02 0.03 0.006 0.008 0.02
(0.60) (0.95) (1.37) (0.30) (0.37) (0.62)

D−6 0.01 0.02 0.04 0.006 0.009 0.02
(0.75) (1.18) (1.71) (0.27) (0.45) (0.74)

D−5 0.01 0.02 0.04 0.008 0.01 0.03
(0.85) (1.29) (1.84) (0.38) (0.68) (1.10)

D−4 0.02 0.02 0.04 0.007 0.01 0.03
(0.92) (1.35) (1.88) (0.33) (0.66) (1.04)

D−3 0.02 0.02 0.04 0.008 0.02 0.03
(0.96) (1.41) (1.92) (0.38) (0.86) (1.32)

D−2 0.02 0.02 0.04 0.006 0.02 0.03
(0.95) (1.33) (1.73) (0.28) (0.75) (1.10)

D−1 0.02 0.03 0.05 0.007 0.02 0.04
(1.15) (1.70) (2.28) (0.36) (0.99) (1.46)

D1 0.03 0.05 0.09 0.01 0.04 0.07
(1.69) (2.95) (4.27) (0.69) (1.89) (2.91)

D2 0.04 0.07 0.13 0.02 0.06 0.11
(2.27) (4.15) (6.08) (1.02) (2.78) (4.27)

D3 0.04 0.08 0.15 0.02 0.07 0.12
(2.66) (4.83) (6.94) (1.18) (3.23) (4.83)

D4 0.05 0.09 0.16 0.03 0.08 0.14
(2.96) (5.31) (7.45) (1.50) (3.93) (5.80)

D5 0.05 0.10 0.16 0.04 0.09 0.16
(3.21) (5.60) (7.63) (1.81) (4.49) (6.49)

D6 0.06 0.10 0.16 0.04 0.10 0.17
(3.37) (5.68) (7.47) (2.04) (4.88) (6.87)

D7 0.06 0.10 0.15 0.05 0.11 0.18
(3.50) (5.76) (7.35) (2.24) (5.19) (7.13)

D8 0.06 0.10 0.15 0.05 0.11 0.17
(3.65) (5.88) (7.29) (2.36) (5.26) (6.98)

D9 0.06 0.10 0.15 0.05 0.11 0.17
(3.75) (5.95) (7.18) (2.47) (5.22) (6.66)

D10 0.06 0.10 0.15 0.05 0.11 0.17
(3.87) (5.98) (7.03) (2.60) (5.34) (6.64)

D11 0.06 0.10 0.14 0.06 0.11 0.17
(3.94) (5.90) (6.69) (2.75) (5.48) (6.67)

D12 0.07 0.10 0.14 0.06 0.11 0.16
(4.08) (5.95) (6.61) (2.84) (5.51) (6.52)

D13 0.07 0.10 0.14 0.06 0.12 0.16
(4.21) (5.94) (6.43) (2.98) (5.58) (6.45)

D14 0.07 0.10 0.13 0.06 0.11 0.15
(4.30) (5.85) (6.14) (3.07) (5.51) (6.18)

R2 Adj 0.14 0.12 0.15 0.08 0.10 0.15
F Stat 8.32 7.42 9.51 5.03 6.53 9.37
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Table 7: The table presents changes in the empirical cumulative density function of the VPIN surrounding
the release of the inventory reports for crude oil and natural gas. Since VPIN estimates are asynchronous,
they are indexed in order relative to the timing of the inventory release where index −1 and 1 denote the
first observations immediately before and after the release, respectively. Only events with a negative and
significant jump and a surprise greater than one standard deviation are included in the regression where
20 VPIN estimates prior to the inventory release and 60 observations following the inventory are considered.
The estimates are obtained via OLS of the regression equation,

Vt,k = β0 +
∑
i̸=l

βiDi + ϵt,k,

where Di is a dummy variable for the ith ECDF(VPIN) estimates. There is no dummy variable D0. The
regression table reports estimates for the dummy variablesD−10−D14 to preserve space. Regression I includes
results for VPIN; Regression II and III are results for EXPS VPINα=0.05 and EXPS VPINα=0.10 respectively. The
VPIN calculation is based on one-minute time bars. All VPIN calculations are based on a moving window
with 50 VPIN observations.

Crude Oil Natural Gas
I II III I II III

Intercept 0.31 0.26 0.29 0.36 0.36 0.38
(3.80) (3.46) (3.37) (10.35) (9.61) (9.55)

D−10 −0.05 0.04 0.07 0.004 0.03 0.06
(−0.46) (0.42) (0.57) (0.09) (0.61) (1.02)

D−9 −0.06 0.04 0.06 9e − 04 0.03 0.06
(−0.49) (0.35) (0.50) (0.02) (0.59) (0.98)

D−8 −0.04 0.06 0.10 −3e − 04 0.03 0.06
(−0.32) (0.54) (0.84) (−0.007) (0.61) (0.98)

D−7 −0.04 0.08 0.15 −0.01 0.01 0.02
(−0.31) (0.80) (1.22) (−0.20) (0.27) (0.41)

D−6 −0.05 0.07 0.12 −0.02 −0.003 −0.003
(−0.41) (0.65) (0.98) (−0.40) (−0.06) (−0.06)

D−5 −0.02 0.14 0.23 −0.03 −0.02 −0.04
(−0.17) (1.35) (1.89) (−0.58) (−0.47) (−0.66)

D−4 −0.02 0.12 0.19 −0.03 −0.04 −0.06
(−0.16) (1.18) (1.61) (−0.66) (−0.72) (−1.02)

D−3 −0.03 0.07 0.11 −0.04 −0.06 −0.09
(−0.27) (0.71) (0.91) (−0.82) (−1.17) (−1.63)

D−2 −0.04 0.03 0.04 −0.04 −0.08 −0.11
(−0.34) (0.28) (0.29) (−0.91) (−1.41) (−1.93)

D−1 0.02 0.19 0.27 −0.03 −0.04 −0.04
(0.20) (1.84) (2.23) (−0.66) (−0.76) (−0.72)

D1 0.18 0.45 0.53 0.03 0.11 0.21
(1.56) (4.25) (4.38) (0.56) (2.02) (3.74)

D2 0.28 0.55 0.61 0.08 0.24 0.38
(2.44) (5.24) (5.03) (1.63) (4.55) (6.71)

D3 0.37 0.62 0.66 0.13 0.35 0.47
(3.24) (5.94) (5.49) (2.73) (6.49) (8.27)

D4 0.43 0.68 0.69 0.18 0.41 0.51
(3.77) (6.43) (5.71) (3.70) (7.70) (8.95)

D5 0.45 0.68 0.69 0.22 0.45 0.53
(3.96) (6.51) (5.72) (4.55) (8.45) (9.29)

D6 0.47 0.69 0.69 0.26 0.48 0.54
(4.11) (6.53) (5.70) (5.27) (8.94) (9.47)

D7 0.47 0.68 0.68 0.29 0.50 0.55
(4.09) (6.50) (5.66) (5.99) (9.43) (9.67)

D8 0.46 0.68 0.68 0.32 0.52 0.55
(4.07) (6.49) (5.62) (6.45) (9.71) (9.78)

D9 0.47 0.67 0.67 0.34 0.53 0.56
(4.11) (6.41) (5.53) (6.91) (9.96) (9.87)

D10 0.47 0.66 0.65 0.36 0.53 0.55
(4.14) (6.31) (5.42) (7.25) (9.99) (9.78)

D11 0.48 0.66 0.64 0.37 0.53 0.55
(4.19) (6.25) (5.32) (7.48) (9.97) (9.64)

D12 0.48 0.65 0.63 0.38 0.53 0.54
(4.24) (6.19) (5.24) (7.81) (9.98) (9.53)

D13 0.49 0.66 0.64 0.39 0.53 0.53
(4.31) (6.23) (5.27) (7.95) (9.94) (9.42)

D14 0.50 0.65 0.62 0.40 0.52 0.52
(4.36) (6.15) (5.15) (8.12) (9.84) (9.23)

R2 Adj 0.65 0.68 0.62 0.46 0.42 0.40
F Stat 8.49 9.42 7.46 29.70 24.86 23.04
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Table 8: The table presents changes in the empirical cumulative density function of the VPIN at jumps
which are not associated with the inventory reports for crude oil and natural gas. Since VPIN estimates
are asynchronous, they are indexed in order relative to the timing of the inventory release where index
−1 and 1 denote the first observations immediately before and after the release, respectively. Only events
with a negative and significant jump and a surprise greater than one standard deviation are included in the
regression where 20 VPIN estimates prior to the inventory release and 60 observations following the inventory
are considered. The estimates are obtained via OLS of the regression equation,

Vt,k = β0 +
∑
i̸=l

βiDi + ϵt,k,

where Di is a dummy variable for the ith ECDF(VPIN) estimates. There is no dummy variable D0. The
regression table reports estimates for the dummy variablesD−10−D14 to preserve space. Regression I includes
results for VPIN; Regression II and III are results for EXPS VPINα=0.05 and EXPS VPINα=0.10 respectively. The
VPIN calculation is based on one-minute time bars. All VPIN calculations are based on a moving window
with 50 VPIN observations.

Crude Oil Natural Gas
I II III I II III

Intercept 0.40 0.42 0.41 0.36 0.35 0.37
(9.04) (9.28) (9.19) (7.82) (7.79) (8.52)

D−10 0.05 0.04 0.07 0.004 −0.005 −0.003
(0.74) (0.65) (1.14) (0.05) (−0.07) (−0.05)

D−9 0.05 0.04 0.07 0.001 −0.006 −0.003
(0.87) (0.67) (1.16) (0.02) (−0.09) (−0.04)

D−8 0.05 0.04 0.07 7e − 04 −0.007 −0.001
(0.81) (0.63) (1.08) (0.01) (−0.11) (−0.02)

D−7 0.06 0.04 0.06 0.007 0.007 0.02
(0.90) (0.63) (0.99) (0.10) (0.10) (0.39)

D−6 0.07 0.04 0.06 0.008 0.02 0.03
(1.05) (0.62) (0.94) (0.13) (0.24) (0.57)

D−5 0.07 0.04 0.05 0.02 0.03 0.06
(1.10) (0.55) (0.82) (0.28) (0.52) (1.03)

D−4 0.08 0.04 0.07 0.02 0.04 0.07
(1.20) (0.69) (1.06) (0.26) (0.57) (1.07)

D−3 0.08 0.06 0.09 0.02 0.05 0.08
(1.25) (0.92) (1.39) (0.37) (0.82) (1.36)

D−2 0.08 0.05 0.08 0.02 0.05 0.07
(1.20) (0.82) (1.20) (0.30) (0.77) (1.15)

D−1 0.10 0.10 0.17 0.03 0.07 0.10
(1.55) (1.58) (2.64) (0.40) (1.03) (1.68)

D1 0.15 0.23 0.34 0.05 0.13 0.20
(2.47) (3.67) (5.40) (0.77) (2.02) (3.30)

D2 0.22 0.34 0.45 0.07 0.19 0.28
(3.49) (5.34) (7.07) (1.16) (2.99) (4.62)

D3 0.25 0.37 0.46 0.09 0.22 0.31
(3.98) (5.78) (7.29) (1.35) (3.48) (5.09)

D4 0.27 0.38 0.46 0.11 0.27 0.35
(4.30) (5.93) (7.27) (1.74) (4.17) (5.70)

D5 0.28 0.38 0.45 0.13 0.29 0.36
(4.52) (5.89) (7.05) (2.07) (4.51) (5.89)

D6 0.29 0.37 0.43 0.15 0.31 0.37
(4.64) (5.83) (6.83) (2.33) (4.82) (6.05)

D7 0.29 0.37 0.42 0.17 0.32 0.37
(4.67) (5.75) (6.67) (2.56) (5.04) (6.16)

D8 0.30 0.36 0.41 0.18 0.33 0.37
(4.74) (5.66) (6.48) (2.71) (5.12) (6.12)

D9 0.29 0.36 0.40 0.19 0.33 0.37
(4.66) (5.58) (6.31) (2.86) (5.13) (6.01)

D10 0.29 0.35 0.39 0.19 0.33 0.36
(4.68) (5.46) (6.07) (3.01) (5.18) (5.97)

D11 0.29 0.34 0.38 0.20 0.34 0.36
(4.67) (5.41) (5.93) (3.15) (5.30) (5.99)

D12 0.30 0.35 0.38 0.21 0.34 0.36
(4.79) (5.53) (6.02) (3.21) (5.35) (5.93)

D13 0.31 0.36 0.40 0.21 0.34 0.35
(4.90) (5.69) (6.24) (3.30) (5.28) (5.72)

D14 0.31 0.36 0.39 0.22 0.33 0.34
(4.98) (5.68) (6.12) (3.36) (5.22) (5.54)

R2 Adj 0.13 0.12 0.14 0.10 0.11 0.12
F Stat 8.24 7.56 8.42 6.23 6.61 7.78
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Table 9: Panel A presents intraday Pearson correlation for crude oil and natural gas. Panel B tabulates 95%
confidence intervals of the correlation estimates. The intervals are obtained by Fisher Z-transformation. λ
denotes the intraday timing for VPIN observations. The variables are absolute value of return (|r|), bid-ask
spread obtained using the CFTC estimator (BAS), number of trades (NT), average trade size (TS), and
realized volatility (RV).

Panel A: Pearson Correlation
|rλ| BASλ VPINλ−1 EXPS VPINλ−1 NTλ−1 TSλ−1 RVλ−1

Crude Oil
|rλ| 1.00 −0.02 0.21 0.28 0.39 0.04 0.68
BASλ −0.02 1.00 −0.07 −0.06 0.01 0.14 −0.00
VPINλ−1 0.21 −0.07 1.00 0.73 0.08 −0.05 0.23
EXPS VPINλ−1 0.28 −0.06 0.73 1.00 0.17 −0.03 0.23
NTλ−1 0.39 0.01 0.08 0.17 1.00 −0.27 0.24
TSλ−1 0.04 0.14 −0.05 −0.03 −0.27 1.00 0.03
RVλ−1 0.68 −0.00 0.23 0.23 0.24 0.03 1.00

Natural Gas
|rλ| 1.00 0.19 0.07 0.19 0.78 −0.01 0.90
BASλ 0.19 1.00 0.13 0.15 0.05 0.17 0.31
VPINλ−1 0.07 0.13 1.00 0.72 0.05 −0.04 0.09
EXPS VPINλ−1 0.19 0.15 0.72 1.00 0.19 −0.03 0.19
NTλ−1 0.78 0.05 0.05 0.19 1.00 −0.03 0.64
TSλ−1 −0.01 0.17 −0.04 −0.03 −0.03 1.00 −0.04
RVλ−1 0.90 0.31 0.09 0.19 0.64 −0.04 1.00

Panel B: Confidence Interval
|rλ| BASλ VPINλ−1 EXPS VPINλ−1 NTλ−1 TSλ−1 RVλ−1

Crude Oil
|rλ| 1 [−0.03,−0.01] [0.20, 0.22] [0.27, 0.29] [0.38, 0.39] [0.03, 0.04] [0.68, 0.68]
BASλ [−0.03,−0.01] 1 [−0.08,−0.07] [−0.07,−0.06] [0.00, 0.02] [0.13, 0.14] [−0.01, 0.01]
VPINλ−1 [0.20, 0.22] [−0.08,−0.07] 1 [0.73, 0.73] [0.07, 0.08] [−0.06,−0.05] [0.23, 0.24]
EXPS VPINλ−1 [0.27, 0.29] [−0.07,−0.06] [0.73, 0.73] 1 [0.17, 0.18] [−0.04,−0.03] [0.22, 0.23]
NTλ−1 [0.38, 0.39] [0.00, 0.02] [0.07, 0.08] [0.17, 0.18] 1 [−0.28,−0.26] [0.24, 0.25]
TSλ−1 [0.03, 0.04] [0.13, 0.14] [−0.06,−0.05] [−0.04,−0.03] [−0.28,−0.26] 1 [0.03, 0.04]
RVλ−1 [0.68, 0.68] [−0.01, 0.01] [0.23, 0.24] [0.22, 0.23] [0.24, 0.25] [0.03, 0.04] 1

Natural Gas
|rλ| 1 [0.18, 0.19] [0.06, 0.08] [0.19, 0.20] [0.78, 0.78] [−0.02,−0.01] [0.89, 0.90]
BASλ [0.18, 0.19] 1 [0.12, 0.14] [0.14, 0.16] [0.04, 0.06] [0.16, 0.17] [0.30, 0.31]
VPINλ−1 [0.06, 0.08] [0.12, 0.14] 1 [0.71, 0.72] [0.04, 0.06] [−0.05,−0.04] [0.08, 0.10]
EXPS VPINλ−1 [0.19, 0.20] [0.14, 0.16] [0.71, 0.72] 1 [0.18, 0.20] [−0.04,−0.03] [0.18, 0.19]
NTλ−1 [0.78, 0.78] [0.04, 0.06] [0.04, 0.06] [0.18, 0.20] 1 [−0.04,−0.02] [0.64, 0.64]
TSλ−1 [−0.02,−0.01] [0.16, 0.17] [−0.05,−0.04] [−0.04,−0.03] [−0.04,−0.02] 1 [−0.05,−0.03]
RVλ−1 [0.89, 0.90] [0.30, 0.31] [0.08, 0.10] [0.18, 0.19] [0.64, 0.64] [−0.05,−0.03] 1
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Table 10: Conditional probability distributions of the absolute value of intraday returns, rλ, given VPINλ−1

(Panel A) and EXPS VPINα=0.10,λ−1 (Panel B) for crude oil following Table 4 in ELO (2012). λ denotes the
intraday VPIN timings.∗

Panel A: Prob (|rλ|/VPINλ−1)
0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% ≥ 2.00%

0.05 95.5 3.9 0.4 0.1 0.0 0.0 0.0 0.0 0.0
0.10 92.0 7.3 0.7 0.0 0.0 0.0 0.0 0.0 0.0
0.15 90.6 8.4 0.9 0.1 0.0 0.0 0.0 0.0 0.0
0.20 89.9 9.3 0.6 0.1 0.1 0.0 0.0 0.0 0.0
0.25 87.8 10.9 1.1 0.1 0.0 0.1 0.0 0.0 0.0
0.30 86.6 11.5 1.4 0.2 0.1 0.1 0.0 0.0 0.0
0.35 84.6 13.5 1.5 0.3 0.1 0.0 0.0 0.0 0.0
0.40 83.8 14.1 1.4 0.5 0.1 0.1 0.0 0.0 0.0
0.45 82.4 14.9 1.7 0.7 0.2 0.1 0.0 0.0 0.0
0.50 82.0 15.6 1.5 0.6 0.3 0.1 0.0 0.0 0.0
0.55 81.1 15.7 2.0 0.7 0.3 0.1 0.1 0.0 0.1
0.60 80.3 16.5 2.1 0.7 0.3 0.1 0.1 0.0 0.0
0.65 79.1 16.5 2.8 0.7 0.6 0.2 0.1 0.0 0.0
0.70 76.9 18.4 3.2 0.9 0.3 0.2 0.1 0.1 0.0
0.75 76.4 18.5 3.3 0.8 0.6 0.2 0.1 0.0 0.1
0.80 74.5 19.7 3.4 1.3 0.6 0.1 0.2 0.1 0.2
0.85 71.6 21.6 4.0 1.6 0.5 0.3 0.2 0.0 0.2
0.90 70.2 22.7 3.8 1.7 0.9 0.3 0.2 0.1 0.1
0.95 69.3 22.8 4.6 1.9 0.8 0.2 0.1 0.1 0.1
1.00 63.9 25.6 6.5 1.8 1.3 0.2 0.2 0.2 0.3

Panel B: Prob (|rλ|/EXPS VPINα=0.10,λ−1)

0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% ≥ 2.00%
0.05 96.9 2.9 0.2 0.0 0.0 0.0 0.0 0.0 0.0
0.10 93.9 5.7 0.4 0.0 0.0 0.0 0.0 0.0 0.0
0.15 91.2 8.0 0.7 0.2 0.0 0.0 0.0 0.0 0.0
0.20 89.0 9.8 0.9 0.2 0.0 0.1 0.0 0.0 0.0
0.25 88.3 10.7 0.9 0.2 0.1 0.0 0.0 0.0 0.0
0.30 86.6 11.9 1.3 0.1 0.0 0.0 0.0 0.0 0.0
0.35 85.1 13.6 1.1 0.1 0.1 0.1 0.0 0.0 0.0
0.40 83.9 14.1 1.3 0.5 0.2 0.0 0.0 0.0 0.0
0.45 83.5 14.6 1.6 0.2 0.1 0.0 0.0 0.0 0.0
0.50 82.1 15.8 1.4 0.5 0.2 0.0 0.0 0.0 0.0
0.55 81.4 16.1 1.7 0.4 0.3 0.1 0.1 0.0 0.0
0.60 79.6 17.0 2.5 0.6 0.3 0.0 0.0 0.0 0.0
0.65 78.9 17.1 2.7 0.8 0.3 0.1 0.1 0.0 0.1
0.70 77.0 18.9 2.8 0.8 0.4 0.1 0.0 0.0 0.0
0.75 75.2 20.0 3.4 0.8 0.5 0.1 0.1 0.0 0.0
0.80 73.5 20.5 3.8 1.4 0.6 0.2 0.0 0.0 0.0
0.85 73.9 20.2 4.0 1.2 0.4 0.2 0.1 0.0 0.1
0.90 70.1 22.4 4.5 1.8 0.7 0.3 0.2 0.1 0.0
0.95 66.9 23.7 5.1 2.2 1.1 0.5 0.3 0.0 0.1
1.00 59.2 26.1 7.1 3.3 2.0 0.7 0.4 0.5 0.7

∗ The row labels (first column) denotes the VPINλ−1 percentiles and the column labels (top row) are the absolute value of
intraday returns, rλ, percentiles.
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Table 11: Conditional probability distributions of the absolute value of intraday returns, rλ, given VPINλ−1

(Panel A) and EXPS VPINα=0.10,λ−1 (Panel B) for natural gas following Table 4 in ELO (2012). λ denotes
the intraday VPIN timings.∗

Panel A: Prob (|rλ|/VPINλ−1)
0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% ≥ 2.00%

0.05 78.3 18.4 2.4 0.5 0.2 0.1 0.1 0.0 0.0
0.10 75.0 20.0 3.7 0.9 0.3 0.1 0.1 0.0 0.0
0.15 73.6 20.5 4.0 1.2 0.3 0.2 0.1 0.0 0.1
0.20 73.9 20.8 3.5 1.0 0.3 0.2 0.1 0.0 0.2
0.25 70.1 22.5 4.7 1.5 0.6 0.2 0.1 0.1 0.3
0.30 69.0 23.4 5.1 1.5 0.4 0.2 0.0 0.0 0.3
0.35 68.5 22.8 6.1 1.5 0.4 0.4 0.1 0.1 0.1
0.40 64.6 26.3 6.1 1.6 0.8 0.3 0.1 0.1 0.2
0.45 63.7 26.1 6.6 1.9 0.7 0.2 0.1 0.2 0.4
0.50 64.4 25.0 6.9 2.2 0.7 0.2 0.1 0.1 0.3
0.55 63.5 25.4 7.3 2.1 0.6 0.3 0.2 0.1 0.4
0.60 60.7 27.8 7.7 2.5 0.6 0.4 0.1 0.1 0.1
0.65 59.9 27.0 8.5 2.8 0.6 0.5 0.2 0.2 0.3
0.70 60.6 27.8 8.1 2.0 0.6 0.3 0.3 0.1 0.1
0.75 60.7 26.2 8.5 2.6 0.8 0.4 0.3 0.1 0.3
0.80 61.6 25.9 8.0 2.3 1.2 0.4 0.2 0.1 0.3
0.85 58.4 26.1 9.4 3.3 1.4 0.3 0.4 0.3 0.5
0.90 59.1 25.4 9.5 3.2 1.1 0.8 0.4 0.3 0.3
0.95 57.5 26.3 8.7 3.6 1.9 0.7 0.3 0.3 0.7
1.00 58.1 25.6 8.8 3.7 1.5 0.8 0.6 0.2 0.6

Panel B: Prob (|rλ|/EXPS VPINα=0.10,λ−1)

0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% ≥ 2.00%
0.05 85.3 13.2 1.3 0.2 0.0 0.0 0.0 0.0 0.0
0.10 80.4 17.1 2.1 0.3 0.1 0.0 0.1 0.0 0.0
0.15 76.0 20.5 2.7 0.6 0.1 0.1 0.0 0.1 0.0
0.20 73.5 21.6 3.8 0.7 0.3 0.0 0.1 0.0 0.0
0.25 71.5 23.0 4.1 1.0 0.3 0.1 0.0 0.0 0.0
0.30 71.2 23.0 4.6 0.8 0.2 0.2 0.1 0.0 0.0
0.35 67.8 25.4 5.3 1.0 0.3 0.1 0.1 0.0 0.0
0.40 65.4 26.3 6.1 1.5 0.3 0.2 0.1 0.1 0.0
0.45 63.2 27.3 7.1 1.6 0.5 0.1 0.1 0.0 0.1
0.50 64.9 25.9 6.9 1.4 0.6 0.2 0.0 0.1 0.1
0.55 63.5 25.9 7.6 1.9 0.6 0.3 0.1 0.1 0.1
0.60 63.8 25.9 6.8 2.4 0.6 0.3 0.1 0.1 0.1
0.65 60.2 27.3 8.9 2.1 0.9 0.2 0.1 0.1 0.1
0.70 61.2 26.2 7.8 3.1 0.9 0.4 0.1 0.1 0.2
0.75 58.2 27.6 9.1 2.9 0.9 0.7 0.1 0.3 0.2
0.80 57.8 26.9 9.7 3.4 1.0 0.7 0.1 0.1 0.2
0.85 54.3 27.9 10.2 4.1 1.5 0.9 0.3 0.2 0.6
0.90 54.4 27.6 10.0 3.9 1.8 0.7 0.5 0.3 0.8
0.95 52.7 26.9 10.5 5.0 2.0 0.8 0.7 0.4 0.9
1.00 47.9 25.7 11.3 5.4 2.7 2.0 1.6 0.8 2.5

∗ The row labels (first column) denotes the VPINλ−1 percentiles and the column labels (top row) are the absolute value of rλ
percentiles.

39



Table 12: Conditional probability distributions of VPINλ−1 (Panel A) and EXPS VPINα=0.10,λ−1 (Panel B)
given the absolute value of rλ for crude oil following Table 4 in ELO (2012). λ denotes the intraday VPIN
timings.∗

Panel A: Prob (VPINλ−1/|rλ|)
0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% ≥ 2.00%

0.05 5.8 1.2 0.8 0.9 0.4 1.1 0.0 0.0 0.0
0.10 5.6 2.3 1.4 0.0 0.0 0.0 0.0 4.0 2.6
0.15 5.5 2.7 1.8 0.7 0.4 0.0 0.0 0.0 0.0
0.20 5.5 3.0 1.4 0.9 0.7 1.1 0.0 0.0 0.0
0.25 5.4 3.5 2.4 0.9 0.4 2.3 0.0 0.0 0.0
0.30 5.3 3.7 3.1 1.6 1.1 3.4 0.0 0.0 0.0
0.35 5.2 4.4 3.1 2.1 0.7 1.1 2.2 4.0 0.0
0.40 5.2 4.6 3.0 3.3 1.5 2.3 0.0 0.0 0.0
0.45 5.1 4.8 3.7 4.7 2.6 4.5 0.0 0.0 0.0
0.50 5.1 5.1 3.2 4.2 3.7 2.3 0.0 0.0 0.0
0.55 5.1 5.2 4.3 4.5 4.4 3.4 6.5 4.0 5.1
0.60 5.0 5.4 4.5 4.5 4.0 4.5 6.5 0.0 0.0
0.65 4.9 5.4 6.0 4.7 8.1 8.0 8.7 4.0 2.6
0.70 4.8 6.0 6.9 5.7 4.8 6.8 4.3 8.0 2.6
0.75 4.8 6.1 7.1 5.7 8.4 6.8 6.5 0.0 5.1
0.80 4.7 6.5 7.2 8.7 8.4 5.7 13.0 8.0 15.4
0.85 4.5 7.1 8.5 11.1 7.0 14.8 13.0 4.0 17.9
0.90 4.4 7.4 8.0 11.8 13.2 13.6 15.2 12.0 10.3
0.95 4.3 7.4 9.8 12.5 11.7 10.2 10.9 16.0 7.7
1.00 3.9 8.2 13.7 11.8 18.7 8.0 13.0 36.0 30.8

Panel B: Prob (EXPS VPINα=0.10,λ−1/|rλ|)
0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% ≥ 2.00%

0.05 6.1 0.9 0.3 0.2 0.4 1.1 0.0 0.0 0.0
0.10 5.8 1.8 0.9 0.2 0.0 0.0 2.2 0.0 0.0
0.15 5.6 2.6 1.4 1.0 0.4 1.1 0.0 0.0 0.0
0.20 5.5 3.2 2.0 1.4 0.0 2.3 0.0 0.0 0.0
0.25 5.5 3.5 1.8 1.0 1.1 0.0 0.0 0.0 0.0
0.30 5.4 3.9 2.7 0.9 0.4 0.0 0.0 0.0 2.6
0.35 5.3 4.4 2.4 0.3 1.1 2.3 0.0 0.0 0.0
0.40 5.2 4.6 2.9 3.1 2.2 1.1 0.0 0.0 0.0
0.45 5.2 4.8 3.4 1.0 1.5 1.1 0.0 4.0 2.6
0.50 5.1 5.2 3.0 3.1 2.6 0.0 0.0 0.0 2.6
0.55 5.1 5.3 3.7 2.6 4.0 2.3 4.3 0.0 0.0
0.60 4.9 5.6 5.3 4.3 3.7 0.0 0.0 0.0 0.0
0.65 4.9 5.6 5.8 5.7 3.7 2.3 4.3 0.0 5.1
0.70 4.7 6.1 5.9 5.2 5.5 3.4 0.0 4.0 0.0
0.75 4.7 6.5 7.3 5.2 6.6 3.4 4.3 0.0 2.6
0.80 4.6 6.7 8.2 9.4 8.1 9.1 2.2 4.0 0.0
0.85 4.5 6.5 8.5 7.8 5.9 6.8 10.9 4.0 5.1
0.90 4.3 7.2 9.5 12.0 10.3 14.8 13.0 8.0 0.0
0.95 4.1 7.6 10.8 14.9 15.8 20.5 26.1 4.0 10.3
1.00 3.5 8.0 14.2 20.6 27.1 28.4 32.6 72.0 69.2

∗ The row labels (first column) denotes the VPINλ−1 percentiles and the column labels (top row) are the absolute value of
intraday returns, rλ, percentiles.
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Table 13: Conditional probability distributions of VPINλ−1 (Panel A) and EXPS VPINα=0.10,λ−1 (Panel B)
given the absolute value of rλ for natural gas following Table 4 in ELO (2012). λ denotes the intraday VPIN
timings.∗

Panel A: Prob (VPINλ−1/|rλ|)
0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% ≥ 2.00%

0.05 5.9 3.7 1.8 1.1 1.1 1.9 1.4 1.1 0.0
0.10 5.7 4.0 2.7 2.1 1.7 1.1 2.1 1.1 0.0
0.15 5.6 4.1 3.0 2.8 1.8 2.2 1.4 1.1 2.5
0.20 5.7 4.2 2.6 2.4 1.8 3.3 2.8 1.1 3.5
0.25 5.3 4.5 3.4 3.5 3.7 2.6 2.1 4.4 4.5
0.30 5.3 4.7 3.8 3.7 2.9 3.3 0.7 0.0 5.0
0.35 5.3 4.7 4.6 3.6 2.8 5.2 1.4 4.4 2.5
0.40 4.9 5.3 4.5 3.8 5.3 4.5 2.1 2.2 3.5
0.45 4.9 5.3 5.0 4.6 4.8 3.3 3.5 6.7 7.0
0.50 4.9 5.1 5.1 5.2 4.6 3.3 3.5 4.4 5.5
0.55 5.0 5.3 5.5 5.0 4.0 4.5 6.4 5.6 6.5
0.60 4.7 5.7 5.8 6.0 3.9 5.9 2.1 3.3 2.5
0.65 4.6 5.5 6.3 6.7 4.2 6.7 6.4 7.8 5.5
0.70 4.7 5.7 6.1 4.7 4.2 4.5 8.5 5.6 2.5
0.75 4.7 5.4 6.4 6.3 5.7 5.9 7.8 2.2 6.0
0.80 4.8 5.4 6.1 5.5 8.5 4.8 5.0 4.4 5.5
0.85 4.6 5.4 7.1 8.0 9.2 4.5 9.9 12.2 8.5
0.90 4.6 5.3 7.2 7.7 7.2 11.5 9.9 12.2 5.5
0.95 4.4 5.4 6.5 8.6 12.7 10.0 7.1 11.1 12.5
1.00 4.4 5.2 6.5 8.8 9.9 10.8 15.6 8.9 11.0

Panel B: Prob (EXPS VPINα=0.10,λ−1/|rλ|)
0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% ≥ 2.00%

0.05 6.8 2.8 1.0 0.5 0.0 0.0 0.0 0.0 0.0
0.10 6.4 3.6 1.6 0.8 0.6 0.0 1.4 0.0 0.5
0.15 6.1 4.3 2.0 1.4 0.7 0.7 0.7 2.2 0.5
0.20 5.8 4.5 2.9 1.8 1.8 0.4 1.4 0.0 0.5
0.25 5.7 4.9 3.2 2.4 2.0 1.1 0.0 1.1 0.0
0.30 5.6 4.8 3.5 1.9 1.1 2.2 1.4 1.1 0.0
0.35 5.3 5.3 4.0 2.6 1.8 1.5 1.4 1.1 0.5
0.40 5.2 5.5 4.7 3.7 2.4 2.2 2.1 2.2 0.5
0.45 4.9 5.7 5.4 3.9 3.3 1.9 2.1 1.1 2.0
0.50 5.0 5.3 5.2 3.3 4.0 2.6 0.0 2.2 1.5
0.55 5.0 5.4 5.8 4.6 4.4 4.1 2.1 2.2 1.0
0.60 5.0 5.4 5.1 5.8 4.4 3.7 2.1 2.2 2.5
0.65 4.7 5.6 6.7 5.0 5.9 2.6 3.5 2.2 2.5
0.70 4.8 5.4 5.9 7.5 5.9 5.2 2.1 4.4 3.5
0.75 4.5 5.7 6.8 6.9 6.1 9.3 2.8 11.1 3.5
0.80 4.4 5.5 7.2 8.0 6.4 10.0 3.5 4.4 4.5
0.85 4.1 5.6 7.5 9.6 10.1 11.5 8.5 8.9 10.0
0.90 4.1 5.5 7.2 9.0 11.9 8.9 13.5 10.0 14.0
0.95 3.8 5.1 7.3 11.2 12.5 10.0 17.0 15.6 16.0
1.00 3.0 4.2 6.8 10.3 14.5 21.9 34.0 27.8 36.5

∗ The row labels (first column) denotes the VPINλ−1 percentiles and the column labels (top row) are the absolute value of rλ
percentiles.
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Table 14: Regression results for the dependent variable bid-ask spread (BASλ) and lagged independent
variables VPINλ−1, EXPS VPINλ−1, number of trades (NTλ−1), trade size (TSλ−1) and realized volatility
(RVλ−1). λ denotes the intraday VPIN timings.∗

BASλ = β0VPINλ−1 + ϵ I

BASλ = β1EXPSVPINλ−1 + ϵ II

BASλ = β0VPINλ−1 + β2NTλ−1 + β3TSλ−1 + ϵ III

BASλ = β1EXPSVPINλ−1 + β2NTλ−1 + β3TSλ−1 + ϵ IV

BASλ = β0VPINλ−1 + β2NTλ−1 + β3TSλ−1 + β4RVλ−1 + ϵ V

BASλ = β1EXPSVPINλ−1 + β2NTλ−1 + β3TSλ−1 + β4RVλ−1 + ϵ VI

Panel A: Crude Oil Regression
I II III IV V VI

Intercept 0.02 0.01 −0.002 −0.002 −0.001 −0.002
(188.17) (226.50) (−60.93) (−57.25) (−63.37) (−75.51)

VPINλ−1 −0.01 0.008 0.001
(−20.41) (60.09) (11.96)

EXPS VPINλ−1 −0.009 0.007 0.003
(−17.78) (68.40) (34.82)

NTλ−1 (×106) 0.73 0.68 0.39 0.37
(115.76) (107.49) (83.60) (79.99)

TSλ−1 (×103) 0.64 0.60 0.30 0.29
(54.47) (51.25) (34.63) (34.47)

RVλ−1 0.009 0.009
(270.97) (271.14)

R2 0.01 0.00 0.19 0.20 0.58 0.59
F 417 316 6, 029 6, 449 27, 170 27, 812

Panel B: Natural Gas Regression
I II III IV V VI

Intercept 0.001 0.001 −0.001 −0.001 −0.003 −0.003
(270.31) (348.16) (−22.39) (−27.59) (−87.74) (−113.66)

VPINλ−1 0.0005 0.003 −0.0003
(35.04) (16.03) (−2.97)

EXPS VPINλ−1 0.0004 0.003 0.0005
(40.67) (21.94) (6.50)

NTλ−1 (×106) 3.11 3.08 1.41 1.40
(321.25) (312.20) (197.87) (196.16)

TSλ−1 (×103) 0.11 0.11 0.19 0.19
(8.31) (8.21) (24.88) (25.23)

RVλ−1 0.01 0.01
(385.02) (384.28)

R2 0.02 0.02 0.59 0.59 0.86 0.86
F 1, 228 1, 654 34, 749 34, 930 115, 991 116, 053
∗ The results in parentheses are the t-statistics for associated coefficient estimates.
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Table 15: Regression results for the dependent variable absolute return (|rλ|) and lagged independent
variables VPINλ−1, EXPS VPINλ−1, number of trades (NTλ−1), trade size (TSλ−1) and realized volatility
(RVλ−1). λ denotes the intraday VPIN timings.∗

|rλ| = β0VPINλ−1 + ϵ I

|rλ| = β1EXPSVPINλ−1 + ϵ II

|rλ| = β0VPINλ−1 + β2NTλ−1 + β3TSλ−1 + ϵ III

|rλ| = β1EXPSVPINλ−1 + β2NTλ−1 + β3TSλ−1 + ϵ IV

|rλ| = β0VPINλ−1 + β2NTλ−1 + β3TSλ−1 + β4RVλ−1 + ϵ V

|rλ| = β1EXPSVPINλ−1 + β2NTλ−1 + β3TSλ−1 + β4RVλ−1 + ϵ VI

Panel A: Crude Oil Regression
I II III IV V VI

Intercept 0.0005 0.0005 −0.002 −0.002 −0.001 −0.002
(27.75) (34.45) (−60.93) (−57.25) (−63.37) (−75.51)

VPINλ−1 0.009 0.008 0.001
(60.85) (60.09) (11.96)

EXPS VPINλ−1 0.009 0.007 0.003
(80.61) (68.40) (34.82)

NTλ−1 (×106) 0.73 0.68 0.39 0.37
(115.76) (107.49) (83.60) (79.99)

TSλ−1 (×103) 0.64 0.60 0.30 0.29
(54.47) (51.25) (34.63) (34.47)

RVλ−1 0.009 0.009
(270.97) (271.14)

R2 0.05 0.08 0.19 0.20 0.58 0.59
F 3, 703 6, 498 6, 029 6, 449 27, 170 27, 812

Panel B: Natural Gas Regression
I II III IV V VI

Intercept 0.001 −0.0005 −0.001 −0.001 −0.003 −0.003
(14.32) (−8.38) (−22.39) (−27.59) (−87.74) (−113.66)

VPINλ−1 0.005 0.003 −0.0003
(20.54) (16.03) (−2.97)

EXPS VPINλ−1 0.01 0.003 0.0005
(55.95) (21.94) (6.50)

NTλ−1 (×106) 3.11 3.08 1.41 1.40
(321.25) (312.20) (197.87) (196.16)

TSλ−1 (×103) 0.11 0.11 0.19 0.19
(8.31) (8.21) (24.88) (25.23)

RVλ−1 0.01 0.01
(385.02) (384.28)

R2 0.01 0.04 0.59 0.59 0.86 0.86
F 422 3, 131 34, 749 34, 930 115, 991 116, 053
∗ The results in parentheses are the t-statistics for associated coefficient estimates.
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Figures

Panel A: Crude Oil - Return and VPIN
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Panel B: Natural Gas - Return and VPIN
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Figure 1: The figure graphs daily returns (blue) and VPIN (green) for crude oil (Panel A) and natural gas
(Panel B). The daily returns are based on closing prices, log(pt/pt−1). The daily VPIN is represented by the
last VPIN per day. The VPIN calculation is based on one-minute time bars, and averaged over a window with
50 observations.
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Crude Oil: 2011-05-05
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Figure 2: The figure graphs the intraday time series of returns, VPIN and EXPS VPINα=0.10, and ECDF
of the toxicity metrics for crude oil on May 5, 2011. The x-axis is time stamps in minutes. The top
panel plots the intraday return, log(pti/pti−1). The second panel plots the VPIN (red continuous line) and
EXPS VPINα=0.10 (green dashed line). The third panel plots the ECDF(VPIN) (dark blue continuous line)
and ECDF(EXPS VPIN) (pink dashed line). The VPIN and EXPS VPINα=0.10 calculations are based on
one-minute time bars and averaged over a window with 50 observations.
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Panel A: Crude Oil
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Panel B: Crude Oil - ECDF
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Panel C: Natural Gas
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Panel D: Natural Gas - ECDF
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Figure 3: The figure graphs the mean values of VPIN (y-axis) at the release of the inventory levels in crude
oil (Panel A) and natural gas (Panel C). Values from applying the empirical cumulative density function to
the VPIN metrics are plotted in Panel B (crude oil) and Panel D (natural gas). Since VPIN estimates are
asynchronous, they are indexed in order relative to the timing of the inventory release where index −1 and 1
denote the first observations immediately before and after the release, respectively. Only days with a negative
and significant jump and a surprise greater than one standard deviation are included in the regression where
20 VPIN estimates prior to and 60 following the inventory release are considered. Non-black dots denote
estimates which are significantly greater (t-stat greater than 1.68) than the dummy variable D−20, which is
used as the basis. The three plotted time series compare results for different VPIN calculations. VPIN (green
dots), EXPS VPINα=0.10 (dark blue dots), and EXPS VPINα=0.10 (light blue dots). The VPIN calculation is
based on one minute time bars. All estimates are based on a window with 50 observations.
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Panel A: Crude Oil
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Panel B: Crude Oil - ECDF
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Panel C: Natural Gas
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Panel D: Natural Gas - ECDF
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Figure 4: The figure graphs the mean values of VPIN (y-axis) at jumps in crude oil (Panel A) and natural
gas (Panel C) returns which are not associated with the releases of inventory levels. Values from applying
the empirical cumulative density function to the VPIN metrics are plotted in Panel B (crude oil) and Panel
D (natural gas). Since VPIN estimates are asynchronous, they are indexed in order relative to the timing
of the inventory release where index −1 and 1 denote the first observations immediately before and after
the release, respectively. 20 VPIN estimates prior to and 60 following the inventory release are considered.
Non-black dots denote estimates which are significantly greater (t-stat greater than 1.68) than the dummy
variable D20, which is used as the basis. The three plotted time series compare results for different VPIN
calculations. VPIN (green dots), EXPS VPINα=0.10 (dark blue dots), and EXPS VPINα=0.10 (light blue dots).
The VPIN calculation is based on one minute time bars. All estimates are based on a window with 50
observations.
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Panel A: Crude Oil - Moving Window Correlation
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Figure 5: The figures plot the difference between the moving window correlations ρ|rλ|,EXPS VPINλ−1
−

ρ|rλ|,VPINλ−1
where ρ|rλ|,EXPS VPINλ−1

is the correlation between absolute values of intraday returns (|rλ|) and
EXPS V PINλ−1; and ρ|rλ|,VPINλ−1

is the correlation between |rλ| and V PINλ−1. The moving window is
based on 50 observations.
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Panel A: Crude Oil Cross Correlation
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Panel B: Natural Gas Cross Correlation
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Figure 6: Cross correlation between absolute returns and vpin. The x-axis labels denote lags between the
returns and vpin. Negative lags denote that VPIN is lagged relative to absolute returns while positive lags
denote that the return is lagged to VPIN.

49



A Appendix

A.I Contract Specifications

Table A.1: Key features of contract specifications for crude oil, heating oil and natural gas.

Panel A: Light, Sweet Crude Oil Futures
Trading Unit
1000 U.S. barrels (42000 gallons)
Price Quotation
U.S. dollars and cents per barrel
Trading Hours
Open outcry trading is conducted from 9:00 AM until 2:30 PM.
Trading Months
Crude oil futures are listed nine years forward using the following listing schedule: consecutive months are
listed for the current year and the next five years; in addition, the June and December contract months are
listed beyond the sixth year.
Minimum Price Flucuation
$0.01 (1¢) per barrel ($10.00 per contract).
Maximum Daily Price Flucuation
$10.00 per barrel ($10, 000 per contract) for all months.
Last Trading Day
Trading terminates at the close of business on the third business day prior to the 25th calendar day of the
month preceding the delivery month. If the 25th calendar day of the month is a non-business day, trading
shall cease on the third business day prior to the business day preceding the 25th calendar day.
Settlement Type
Physical
Delivery
F.O.B. seller’s facility, Cushing, Oklahoma, at any pipeline or storage facility with pipeline access to TEP-
PCO, Cushing storage, or Equilon Pipeline Co., by in-tank transfer, in-line transfer, book-out, or inter-
facility transfer (pumpover).
Trading Symbol
CL

Panel B: Henry Hub Natural Gas Futures
Trading Unit
10, 000 million British thermal units (mmBtu).
Price Quotation
U.S. dollars and cents per barrel
Trading Hours
Open outcry trading is conducted from 9:00 AM until 2:30 PM.
Trading Months
The current year plus the next twelve years through December 2020. A new calendar year will be added
following the termination of trading in the December contract of the current year.
Minimum Price Flucuation
$0.001 (0.1¢) per mmBtu ($10.00 per contract).
Maximum Daily Price Flucuation
$3.00 per barrel ($30, 000 per contract) for all months.
Last Trading Day
Trading terminates three business days prior to the first calendar day of the delivery month.
Settlement Type
Physical
Delivery
The Sabine Pipe Line Co. Henry Hub in Louisiana. Seller is responsible for the movement of the gas through
the Hub; the buyer, from the Hub. The Hub fee will be paid by seller.
Trading Symbol
NG
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