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Abstract

This paper provides explicit formulas for the first and second moments and the autocorrelation
function of the number of jumps over a given interval for the multivariate Hawkes process. These
computations are possible thanks to the affine property of this process. We unify the stock price
models of Bacry et al. (2013a) and Da Fonseca and Zaatour (2013) both of them based on the
Hawkes process, the first one having a mean reverting behaviour whilst the second one has a clus-
tering behaviour, and build a model having these two properties. We compute various statistics as
well as the diffusive limit for the stock price that determines the connection between the parameters
driving the high frequency activity to the daily volatility. Lastly, the impulse function giving the
impact on the stock price of a buy/sell trade is explicitly computed.
In a model for buy and sell orders based on the Hawkes process we compute the market impact of
a trade as well as a collection of trades. We obtain a function which is similar to those obtained in
previous empirical studies.
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Introduction

Trading activity leads to time series of irregularly spaced points that show both clustering and mean

reverting behaviours. This stylized property suggests the use of the Hawkes process, a point process

mathematically defined by Hawkes (1971), which is an extension of the classical Poisson process that

possesses these properties. It explains the large number of works on trading activity and more gener-

ally high-frequency econometrics based on this process as a modelling framework.

The purpose of this work is to develop closed-form solutions for some functionals of the Hawkes pro-

cess. The main mathematical tool is the Dynkin formula that we use to derive the ordinary differential

equations solved by the first and second moments. Thanks to these equations we compute the auto-

covariance function of the number of jumps over a given time interval for the Hawkes process. These

computations are possible thanks to the affine property of the Hawkes process.

We use these analytical results to understand the statistical properties of a stock whose dynamics is

expressed as a function of a Hawkes process. The simplest model proposed in the literature for a stock

based on this process appears in Bacry et al. (2013a). Although simple this model enables to capture

the mean reverting behaviour of a stock price but not the clustering behaviour. Within this framework

in Da Fonseca and Zaatour (2013) a model with clustering behaviour was developed. Our objective

is to unify the models of Bacry et al. (2013a) and Da Fonseca and Zaatour (2013) and build a toy

model based on the multivariate Hawkes process that can exhibit both clustering and mean reverting

behaviours. Thanks to the analytical results obtained for the first and second moments as well as the

autocovariance function of multivariate Hawkes process the statistical properties of the price dynamic

is explicitly given in terms of the model parameters. Depending on the parameters values the stock

dynamic has a mean reverting or a clustering behaviour. Also, the results allow us to compute the

signature plot which is the function relating the volatility computed using the stock price to the sam-

pling frequency. Here also, the closed-form solutions permit to understand how the mean reverting

and the clustering behaviours affect the computed volatility. Lastly, we compute the diffusive limit

associated with the stock dynamic. Therefore, we make the link between the microscopic activity

(i.e. the trading activity at high frequency) to the macroscopic activity (i.e. the daily volatility as

used in the Black-Scholes model) explicit. To perform such analysis the analytical tractability of the

Hawkes process turns out to be essential and underlines the advantages related to the simplicity of
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this process. Our work falls in a new trend of the literature developed by Cont et al. (2010), Cont

and De Larrard (2011), Cont and De Larrard (2012), Bacry et al. (2013a), Abergel and Jedidi (2013),

Bacry et al. (2013b), Kirilenko et al. (2013) aiming at connecting these two scales (the high frequency

quantities and the daily quantities).

Using a model for buy and sell orders based on the Hawkes process we compute the market impact of

a trade. We then extend the results to set of orders and compute explicitly the market impact. We

recover the usual shape for meta order as presented in the literature.

The structure of the paper is as follows. In the first section, we show empirical evidences of mean

reverting and clustering behaviours on high frequency data. In the second section, we describe the

analytical framework which comprises the basic properties of the Hawkes process as well as the Dynkin

formula that will be our main mathematical tool. Using these results, the computation of the moments

and the autocorrelation function of the number of jumps over a given time interval is provided. In

the third section, we develop two applications. The first application is a toy model for the stock price

based on a multivariate Hawkes process, we compute different statistical properties and the diffusive

limit for the stock. The second application is a toy model for buy and sell orders and we compute

explicitly the market impact of a collection of trades. Finally, we conclude and provide some technical

results, tables and figures which are gathered in the appendix.

1 Empirical Evidences

We define the clustering as the strong autocorrelation in the occurrence frequency of a certain event.

The mean reversion is the strong autocorrelation in the occurrence of two opposite events, such as

buy and sell order arrivals or up and down price movements. Both clustering and mean reversion are

important characteristics of many aspects of the trading activity. The random walk nature of the price

process observed on a coarse time scale is the result of their subtle interaction on a microscopic time

scale. Borrowing the language of (Bouchaud et al., 2004), we can say that clustering (persistence),

leads to super diffusion whereas mean reversion (anti-persistence) leads to sub-diffusion, the overall

effect being the diffusive aspect of the price process.

For example, time series of the number of buy orders occurring during consecutive time intervals of
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length τ are highly autocorrelated. This correlation persists for several lags as is clear in Figure 1.

The same is true for sell orders. The same phenomena is observed daily and for any choice of τ .

[ Insert Figure 1 here ]

Additionally, if one considers time occurrences of up and down mid price jumps, the same phenomenon

is observed as is clear in Figure 2.

[ Insert Figure 2 here ]

Conversely, cross correlation functions between the number of occurrences of opposite phenomena

during a time interval also present the same property. Buy orders seem then to trigger sell orders,

which in turn trigger other buy orders, as is clear in Figure 3. Up and down jumps of the mid price

present the same property, and their cross correlation functions are plotted in Figure 4.

[ Insert Figure 3 here ]

[ Insert Figure 4 here ]

Therefore, the clustering effect is compensated by a mean reversion phenomenon as illustrated in the

cross correlation functions. This rich interaction in the micro structure level results macroscopically

in the price trajectory for which the efficient market hypothesis as well as the Brownian diffusion

approximation seem to be reasonable.

These kind of figures would not have been obtained if the studied events were realizations of indepen-

dent Poisson processes, and the estimated autocorrelations would have been insignificant in that case.

Hawkes processes present a versatile mathematical framework allowing to deal with such phenomena.

2 Mathematical Framework

2.1 The multivariate Hawkes process

Let Xt = (λt, Nt) is a Markov process in the state space D = Rn+ × Nn, which satisfies the dynamic:
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dλt = β(λ∞ − λt)dt+ αdNt (1)

with β, α two n× n real matrices and λ∞ a vector of Rn. Ito’s lemma to eβtλt yields:

λt = e−βt (λ0 − λ∞) + λ∞ +

∫ t

0
e−β(t−v)αdNv. (2)

From (2) we also observe that the impact on the intensity of a jump dies out exponentially as time

passes. For the existence and uniqueness results we refer to Chapter 14 of Daley and Jones (2008)

and references therein, of particular interest is Brémaud and Massoulié (1994).

As t gets larger the impact of λ0, the initial value for the intensity, vanishes leaving us with:

λt ∼ λ∞ +

∫ t

0
e−β(t−v)αdNv.

Our presentation differs slightly from the usual one found in the literature where the Hawkes intensity

is written as:

λt = λ∞ +

∫ t

−∞
e−β(t−v)αdNv. (3)

The equation (3) leads to a stochastic differential equation similar to (1), the process starts infinitely

in the past and is at its stationary regime. In our case we have a dependency with respect to the

initial position λ0 in equation (2) but, as mentioned above, for t large enough its impact will vanish.

Our presentation for the Hawkes process follows closely Errais et al. (2010) and is motivated by the

fact that we want to perform stochastic differential calculus.

The infinitesimal generator of the diffusion is given by

Lf = (β(λ∞ − λ))>∇>f + λ>


f(λ+ αe1, Nt + e1)− f

...

...

f(λ+ αen, Nt + en)− f

 (4)

for f : D → R, where ∇f = (∂λ1f, ..., ∂λnf) is a 1 × n vector and (ei)i=1..n is the canonical basis of

Rn.
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For every function f in the domain of the infinitesimal generator, the process:

Mt = f (Xt)− f (X0)−
∫ t

0
Lf (Xv) dv

is a martingale relative to its natural filtration (see for example Proposition 1.6 of chapter VII in

Revuz and Yor (1999)) and for s > t we have:

E
[
f (Xs)−

∫ s

0
Lf (Xv) dv|Ft

]
= f (Xt) +

∫ s

t
Lf (v,Xv) dv

by the martingale property, so finally:

E [f (Xs) |Ft] = f (Xt) + E
[∫ s

t
Lf (Xv) dv|Ft

]
. (5)

This gives a very convenient way to calculate conditional expectations of functional of the Markov

process Xt = (Nt, λt) when the expectation of the right hand side of the preceding equation can be

easily computed.

Notice also that further taking the expectation of the above formula allows to get rid of the condi-

tioning and gives unconditional expectations of quantities of interest depending on the process (Nt, λt).

The infinitesimal generator of the diffusion leads, thanks to Feynman-Kac formula, to the computation

of the moment-generating function. Denote by φ(t, z, u) = E
[
ez
>λt+u>Nt

]
this function, it solves the

partial differential equation with initial condition: ∂tφ = Lφ

φ(0, z, u) = ez
>λ0+u>N0 .

The model being affine we look for a solution of the form eat+b
>
t λ+u>N that leads to a set of ordinary

differential equations:  ∂ta = b>βλ∞

∂tb = −β>b+ h− 1

with initial conditions a0 = 0, b0 = z, and 1 = (1, . . . , 1)> whilst the function h is defined as:

h =


eb
>αe1+u>e1

. . .

eb
>αen+u>en .

 .
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To compute the moments we still need to derive the function which leads to some tedious calculus. It

is easier to compute by integrating the ordinary differential equations associated with the moments,

these equations can be obtained by repeatedly applying the Dynkin formula (5) as shown in the

following subsection.

2.2 Computing the moments and autocorrelation function

Our aim in this section is to compute the moments of the process Xt = (λt, Nt) and also the autoco-

variance of the number of jumps over a period τ . To achieve this we rely on the infinitesimal generator

of the process given by (4) and Dynkin’s formula (5). In order to obtain the expected number of jumps

and the expected intensity we use the following lemma.

Lemma 1 Given a Hawkes process Xt = (λt, Nt) with dynamic given by (1) then the expected number

of jumps E[Nt] and the expected intensity E[λt] satisfy the set of ODE:

dE[λt] = β(λ∞ − E[λt])dt+ αE[λt]dt (6)

dE[Nt] = E[λt]dt. (7)

These equations can be integrated explicitly as we have:

E[λt] = (α− β)−1
(
e(α−β)t − I

)
βλ∞ + e(α−β)tλ0 (8)

= c0(t)λ0 + c1(t) (9)

and

E[Nt] = N0 + (α− β)−1
(
e(α−β)t − I

)
λ0 +

((
(α− β)−1

)2 (
e(α−β)t − I

)
βλ∞ − (α− β)−1βλ∞t

)
= N0 + c2(t)λ0 + c3(t). (10)

We will need the following asymptotic expectations

Lemma 2 Given a Hawkes process with dynamic given by (1) then long term expected intensity is

given by:

7



lim
t→+∞

E [λt] = λ̄∞ = −(α− β)−1βλ∞. (11)

whilst the long term expected number of jumps over an interval τ is:

lim
t→+∞

E [Nt+τ −Nt] = −(α− β)−1βλ∞τ (12)

= λ̄∞τ. (13)

Lemma 3 Given a Hawkes process Xt = (λt, Nt) with dynamic given by (1) then the functions

E
[
NtN

>
t

]
, E[λtN

>
t ] and E

[
λtλ
>
t

]
solve the set of ODE:

d

dt
E
[
NtN

>
t

]
= E

[
λtN

>
t

]
+ E[Ntλ

>
t ] + diag(E[λt]) (14)

d

dt
E[λtN

>
t ] = βλ∞E[N>t ] + (α− β)E[λtN

>
t ] + E[λtλ

>
t ] + αdiag(E[λt]) (15)

d

dt
E
[
λtλ
>
t

]
= βλ∞E

[
λ>t

]
+ E[λt]λ

>
∞β
> + (α− β)E

[
λtλ
>
t

]
+ E

[
λtλ
>
t

]
(α− β)> + αdiag(E[λt])α

>

(16)

and the long term covariance matrix for the intensity Λ∞ = limt→+∞ E[λtλ
>
t ] solves the algebraic

matrix equation

(α− β)Λ̄∞ + Λ̄∞(α− β)> + αdiag(λ̄∞)α> = 0 (17)

with Λ̄∞ = Λ∞ − λ̄∞λ̄>∞ where λ̄∞ is given by (11).

Using the previous lemmas we can compute second order moment as well as the auto-covariance

function. We have the following lemma

Lemma 4 The long term second order moment of the Hawkes over a given interval τ > 0 is

Cov(τ) = lim
t→+∞

E
[
(Nt+τ −Nt)(Nt+τ −Nt)

>
]
− E [(Nt+τ −Nt)]E

[
(Nt+τ −Nt)

>
]

= J1 + J>1 + τdiag(λ̄∞) (18)

with J1 = c5(τ)(Λ̄∞ + αdiag(λ̄)) and

c5(τ) = −(α− β)−1τ + (α− β)−2(e(α−β)τ − I)
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As we are interested by the autocorrelation structure of the process the following quantity proved to

be essential

Lemma 5 Given t1 < t2 ≤ t3 < t4 with t2 − t1 = τ1, t4 − t3 = τ2 and t3 − t2 = δ we have

Cov1(τ1, τ2, δ) = lim
t1→+∞

E
[
(Nt4 −Nt3)(Nt2 −Nt1)>

]
− E [(Nt4 −Nt3)]E

[
(Nt2 −Nt1)>

]
= c2(τ2)c0(δ)c2(τ1)

(
Λ̄∞ + αdiag(λ̄∞)

)
(19)

with Λ̄∞ given by (17) and λ̄∞ by (11).

It is possible to relax the assumption of overlapping intervals made in the previous lemma. We have

Lemma 6 Given t1 < t3 ≤ t2 < t4 with t2 − t1 = τ1, t4 − t3 = τ2 and t3 − t1 = δ (note the difference

with the previous lemma), we have

Cov2(τ1, τ2, δ) = lim
t1→+∞

E
[
(Nt4 −Nt3)(Nt2 −Nt1)>

]
− E [Nt4 −Nt3 ]E

[
(Nt2 −Nt1)>

]
(20)

= Cov1(τ1, τ2 − (τ1 − δ), 0) + Cov(τ1 − δ) + Cov1(δ, τ1 − δ, 0).

Having the expression for the autocovariance functions we can define the autocorrelation function that

will be used in the calibration procedure.

Corr(τ, δ) = lim
t→+∞

E
[
(Nt+τ −Nt)(Nt+τ+δ −Nt+δ)

>]− E [Nt+τ −Nt]E
[
(Nt+τ+δ −Nt+δ)

>]√
Cov(τ)

√
Cov(τ + δ)

(21)

where depending whether δ ≥ τ or not we use either (19) or (20).

Lemma 5 leads to the following useful result whose proof is straightforward:

Lemma 7 Given the covariance matrix Cov1(τ1, τ2, δ) defined by (19) then we have

Σ̄ =

∞∑
j=0

Cov1(1, 1, j)

= −(α− β)−2(I − eα−β)(Λ̄∞ + αdiag(λ̄∞)) (22)
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2.3 Data Description and Estimation Algorithm

We rely on tick-by-tick data from TRTH (Thomson Reuters Tick History). We deal with futures on

indices such as Dax and Eurostoxx, as well as some other commodity, interest rates and forex futures.

The data covers the period between 2010/01/01 to 2011/12/31. It consists of quotes files recording

quote changes (bid/ask prices and quantities) timestamped up to the millisecond, as well as trade files

recording the transactions (prices and quantities) timestamped to the millisecond.

For some of our empirical investigations, we needed to infer the sign of the trades and to this purpose

we rely on the Lee and Ready algorithm as introduced in Lee and Ready (1991).

The estimation algorithm relies on maximum likelihood method. From Proposition 7.2.III of Daley

and Jones (2002), the log-likelihood of a point process (Nt)t≥0 writes up to an additive constant:

L = −
∫ T

0
λtdt+

∫ T

0
ln (λt) dNt.

= −
∫ T

0

(
λ∞ +

∫ t

0
e−β(t−s)αdNs

)
dt+

n∑
i=1

Nj
T∑

j=1

ln
(
λitj

)
So that, the log-likelihood of the multidimensional Hawkes process is the sum of the log-likelihoods

generated by the observation of each coordinate process:

L =
n∑
i=1

Lm.

This takes a particularly simple form if we consider a diagonal structure for the β matrix, that is

β = diag(β̄1, ..., β̄n), we obtain thanks to (Ogata, 1981):

Lm = −λm∞T −
n∑
i=1

N∑
j=1

αmi
β̄i

(
1− eβ̄i(T−tj)

)
+

NT∑
i=1

ln

λm∞ +

NT∑
j=1

αmiR
mi(j)

,
where:

Rmi(1) = 0

Rmm(j) = e−β̄m(tmj −tmj−1)(1 +Rmm(j − 1))

Rmi(j) = e−β̄i(t
m
i −tmj−1)Rum(j − 1) +

∑
k:tmj−1≤tik<t

m
j

e−β̄(tmk −t
i
j) for i 6= m

This recursive element enables efficient calculation of the function.
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3 Applications

3.1 Generalized Bacry-Delattre-Hoffmann-Muzy model

3.1.1 Model specification and its estimation

In this section, we closely follow the spirit of (Bacry et al., 2013a) and generalize their results. Our

purpose is to model the evolution of the mid price of a traded asset. The mid price is the mean of

the best ask price in the order book and the best bid price. As these move up or down by one tick at

a time, the mid price moves up (down) by half a tick every time that the best ask price or best bid

price moves up (down) by one tick. The model writes :

St = S0 +
(
Nu
t −Nd

t

) ν
2
, (23)

where ν is the tick value. The Nu
t and Nd

t are Hawkes processes capturing the up ad down jumps of

the mid price. We consider that both processes are self exciting as well as mutually exciting. We are

then capturing both characteristics of microstructure price formation: clustering and mean reversion.

In the stationary regime, their intensities write:

λut = λ∞ +

∫ t

0
αse
−β̄(t−v)dNu

v +

∫ t

0
αme

−β̄(t−v)dNd
v (24)

λdt = λ∞ +

∫ t

0
αme

−β̄(t−v)dNu
v +

∫ t

0
αse
−β̄(t−v)dNd

v , (25)

where with our original notations this translates to:

α =

 αs αm

αm αs

 ;β =

 β̄ 0

0 β̄


where αs stands for the self excitation parameter, αm stands for the mutual excitation parameter, the

two intensities lead to a two-dimensional vector λt = (λut , λ
d
t )
> whilst the two jumps processes give

the vector Nt = (Nu
t , N

d
t )>.

Notice that α is component-wise positive, that is to say αs > 0 and αm > 0. As a result, we exclude

any inhibitory effects (that is a jump in one component of the process decreasing the probability of

jump for the other component).
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A stability condition for the model is that the matrix α− β has eigenvalues with negative real parts.

The eigenvalues of the matrix α− β are:

x1 = αs − β̄ − αm (26)

x2 = αs − β̄ + αm. (27)

So that the stability condition translates to:

x1 < 0⇔ β̄ − αs + αm > 0 (28)

x2 < 0⇔ β̄ − αs − αm > 0. (29)

We choose to consider perfectly symmetric processes so that the resultant price to be balanced (i.e.

to have a martingale property). This property will be necessary in order to derive the asymptotic

volatility. Note that this asymptotic result can be obtained under more general matrices α and β so

long that some constraints are satisfied. For example, if we consider a non symmetric setting we can

still ensure the martingale property of the price. For instance, considering

α =

 α11 α12

α21 α22

 ;β =

 β̄1 0

0 β̄2


the formulas for the moment allow us to show that for the price to be a martingale, that is in order

for the up jumps to completely offset the down jumps on average, the above variables have to satisfy:

α11 + α12

β̄1
=
α21 + α22

β̄2

We nevertheless stick with our simpler setting as the aim here is to highlight clustering and mean

reversion interactions. Considering a non symmetric setting enables to uncover asymmetries in such

interactions and we let that interesting problem for a future research. Lastly, to the extent that we

are not interest in asymptotic results and that some constraints ensuring the stability of the SDE are

satisfied the matrices can be rather general.

We rely on the previously cited quote files giving best bid and ask changes timestamped up to the

millisecond. This allow us to produce time records of up and down mid price jumps corresponding

to a bivariate Hawkes process N in our framework. Parameter estimation is then conducted by

maximum likelihood. The likelihood function is computed thanks to Ozaki (1979) and the optimisation
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is conducted by a Nelder-Mead algorithm1. We conducted the parameter estimation daily on our 2-

year dataset. After the first estimation, we use the found parameters as a first guess for the consecutive

day calibration. Results are reported in Table 1, where they seem very stable.

[ Insert Table 1 here ]

Additionally, the model is generalized version of the pioneering work of Bacry et al. (2013a) who

consider only mean reversion. It also generalizes the work in Da Fonseca and Zaatour (2013) who

consider only the clustering component. It is then interesting, as the general model encompasses both

of the previously cited, to see if both of the phenomena is really needed. To that purpose, we conduct

a likelihood ratio test. Results are reported in Table 1 where one can see that both phenomena are

generally needed, but for some days for Eurostoxx, and the German bonds (Bobl, Bund and Schatz),

where mean reversion alone can be a best data fit.

3.1.2 Statistical properties

Having specified the dynamics for the intensities we can analyse the statistical properties of the asset

in this toy model. Thanks to the computation carried out in the analytical section many these prop-

erties can be explicitly expressed in terms of the parameters driving the Hawkes processes.

Within this simple model we can compute the autocovariance function of the price increments. To this

end we consider the expected covariance of price increments over two non-overlapping time intervals

of length τ and with lag δ, it is defined as:

CovStock(τ, δ) = E [(St+τ − St) (St+2τ+δ − St+τ+δ)]

= E
[(

(Nu
t+τ −Nu

t ) − (Nd
t+τ −Nd

t )
)(

(Nu
t+2τ+δ −Nu

t+τ+δ) − (Nd
t+2τ+δ −Nd

t+τ+δ)
)] ν2

4
.

For the model considered this quantity can be computed explicitly as we have:

Proposition 8 The autocovariance function CovStock(τ, δ) is given by

CovStock(τ, δ) = (M11 +M22 −M12 −M21)
ν2

4
(30)

1We used the open source library NL-opt, see http://ab-initio.mit.edu/wiki/index.php/NLopt
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where M is given by 5.

For intensities following the dynamics (24) and (25). The above equation leads to the expression for

the autocorrelation function of price increments:

CorrStock(τ, δ) = −
e−(δ+2τ)(β+αm−αs)

(
eτ(β+αm−αs) − 1

)2
(αm − αs) (2β + αm − αs)

2β2 (β + αm − αs)
. (31)

First, if αm = 0 then we conclude of the positiveness of the above correlation. An up jump increases

the mid price and the up intensity (without affecting the down intensity) which increases the likelihood

of another up jump. As a result, there is a positive autocorrelation of the stock price and a clustering

of jumps in the same direction. On the contrary, if αs = 0 the above correlation is negative. An up

jump increases the mid price and the down intensity which increases the likelihood of a down jump

and a decrease of the mid price, it leads to a mean reverting behaviour of the mid price. Whenever

αs = αm the above autocorrelation is equal to zero because the two opposite effects offset each other.

Moreover, the decay of the autocorrelation as a function of the lag increases αm whilst αs has the

opposite effect.

Having a better understanding of the clustering and mean reverting behaviour in this model we can

analyse its impact on the signature plot. The use of high-frequency data leads to the estimation of

the volatility from returns sampled at possibly different frequencies. The dependency of the resulting

volatility on the sampling frequency is called the signature plot and is of tremendous importance in

practice. Within the toy model this effect can be explicitly analysed. Indeed, the realized variance

over a period T calculated by sampling the data by time intervals of length τ can be written as:

Ĉ(τ) =
1

T

T/τ−1∑
n=0

(
S(n+1)τ − Snτ

)2
=

1

T

T/τ−1∑
n=0

((
Nu

(n+1)τ −Nu
nτ

)
−
(
Nd

(n+1)τ −Nd
nτ

))2 ν2
4

=
1

T

T/τ−1∑
n=0

(
Nu

(n+1)τ −Nu
nτ

)2 ν2
4

+
1

T

T/τ−1∑
n=0

(
Nd

(n+1)τ −Nd
nτ

)2 ν2
4

− 2
1

T

T/τ−1∑
n=0

(
Nu

(n+1)τ −Nu
nτ

) (
Nd

(n+1)τ −Nd
nτ

) ν2
4
.

The mean signature plot, or more simply signature plot, is the expectation of the above quantity and

is explicitly given by:
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Proposition 9 The signature plot C(τ) = E[Ĉ(τ)] is:

C(τ) =
ν2

4
(M11 +M22 −M12 −M21) (32)

=
ν2

2
Λ

(
κ2 +

(
1− κ2

) (1− e−τγ)

γτ

)
(33)

where M in (32) is the second moment matrix calculated in 4 whilst (33) is the expression when the

intensities follow the dynamics (24) and (25) and the parameters are:

Λ =
β̄λ∞

β̄ − αs − αm
, κ =

β̄

β̄ + αm − αs
and γ = β̄ + αm − αs.

Notice that αs = 0 enables to retrieve (Bacry et al., 2013a) results, that is to say the case with

intensities which are only mutually excited. Whenever αm = 0 leads to the results of (Da Fonseca

and Zaatour, 2013), the case of self-excitation only. Also, whenever the clustering and mean reversion

effects are equal (i.e. αm = αs) the signature plot is flat and the volatility estimated at every time

resolution is equal to ν2Λ
2 , there is no bias due to mean reversion or clustering because these two effects

perfectly offset each other. Lastly, taking the limit τ to infinity leads the the asymptotic volatility as

it will be proven in the following propositions.

We focus on the computation of the diffusive limit associated with the stock dynamic. It allows the

determination of the connection between the microscopic price formation process observed at trans-

action level to its macroscopic properties at a coarser time scale. In other words, we connect the

stochastic differential equations used to model an asset price evolution at a daily frequency, such as in

the Black-Scholes model which relies mainly on the continuous Brownian motion, to the discontinuous

point process describing individual transactions. The Hawkes process, thanks to its strong analytical

tractability, enables us to relate these two time scales.

To fulfil this objective a limit theorem is needed. In Bacry et al. (2013b), the authors rely on martingale

theory and limit theorems for semi-martingales to prove stability and convergence results for a general

model with mutually exciting processes and a generic kernel. In our case, as the kernel is exponential

the process Xt =
(
Nu
t , λ

u
t , N

d
t , λ

d
t

)
is a Markov process. Its infinitesimal generator writes:

Lf (x) = β̄ (λ∞ − λut )
∂f

∂λu
(x) + β̄

(
λ∞ − λdt

) ∂f

∂λd
(x)

+ λut

[
f
(
Nu
t + 1, λut + αs, N

d
t , λ

d
t + αm

)
− f (x)

]
+ λdt

[
f
(
Nu
t , λ

u
t + αm, N

d
t + 1, λdt + αs

)
− f (x)

]
.
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Thanks to the explicit expression for the infinitesimal generator we rely on a simple method to establish

some stability results. For instance, ergodicity of the process Xt, that is its convergence to a stationary

regime can be easily established thanks to the Foster-Lyapounov test function criterion. In our case,

define the function V (x) = λu+λd

2λ∞
, then a simple calculation yields the geometric drift condition:

LV (x) ≤ −(β̄ − αm − αs)V (x) + β̄, (34)

which grants, thanks to Theorems 6.1 and 7.1 in (Meyn and Tweedie, 2009) (and especially (CD3)),

the V-uniform ergodicity of the process Xt.

Let us then write unit-time price increments:

ηi =
[
(Nu

i −Nu
i−1)− (Nd

i −Nd
i−1)

]
× ν

2
,

and consider the random sums

Sn =
n∑
i=1

ηi,

where {ηi; i = 1 . . . n} denotes a set of price increments (note that E[ηi] = 0). We are interested in the

asymptotic behaviour of the price process

S̄nt =
Sbntc√
n
.

The V-uniform ergodicity and Theorem 16.1.5 in Meyn and Tweedie (2009) allows us to conclude

that the increments are geometrically mixing and Theorem 19.3 of Billingsley (1999) proves that S̄nt

converges to a Brownian motion in the sense of Skorokhod topology.

S̄nt ⇒ σWt.

with the volatility is given by

σ2 = lim
n→∞

Var(Sn)

n
.

The closed-form formulas obtained in the analytical part enable to compute explicitly this volatility

as we have the following proposition:
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Proposition 10 The volatility σ2 is given:

σ2 =
ν2

4
(M11 +M11 −M12 −M21) (35)

with

M = Cov(1) + 2Σ̄ (36)

where the two matrices in (36) are given by (18) and (22), respectively.

This expression is valid for a general dynamic but for the particular choice made in this work the

volatility turns out to have a very simple expression, as the next proposition shows:

Proposition 11 If the dynamic intensities are given by (24) (25) the volatility (35) has the expression:

σ2 =
ν2

2
Λκ2

=
ν2

2

β̄3λ∞
(β̄ − αs − αm)(β̄ + αm − αs)2

with:

Λ =
β̄λ∞

β̄ − αs − αm
, κ =

β̄

β̄ + αm − αs
.

As can be expected, increasing the self excitation parameter αs, and hence the clustering effect, in-

creases the volatility as this leads to positive autocorrelation of the returns. On the contrary, increasing

the mutual excitation parameter αm decreases the overall volatility because of the negative autocor-

relation of the returns. Obviously, these parameters have to remain in the region β̄ − αs − αm > 0 in

order for the stability condition to be satisfied. Also, taking the limit τ → +∞ in (33) leads to an

equality between the signature plot and the asymptotic volatility.

In Bacry et al. (2013a) the authors consider a mean reversion effect only, and obtain the same formula

as above with αs = 0, whereas in Da Fonseca and Zaatour (2013) the authors consider clustering

alone and obtain the same formula as above with αm = 0. In the latter article, calibration is done

on real data of both models (clustering only or mean reversion only), and empirical results show that

considering only one effect results in a systematically underestimated or systematically overestimated

realized volatility.

We conducted here the same realized variance estimations as in Da Fonseca and Zaatour (2013),

based on the calibration of this more complete model. Results are reported in Table 2. They clearly
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show that calibrating the clustering as well as mean reversion effects results in better fits to realized

volatility.

[ Insert Table 2 here ]

Within this simple model it is possible to explicitly analyse the price impact of a trade. This is a key

quantity that appears in many, if not all, papers on microstructure models, see for example Dufour

and Engle (2000). We illustrate the impact of a “up” move but similar results apply to a down move.

Proposition 12 Given τ and δ the impact of a “up” move on the stock returns is

imp(τ, δ) = lim
t→+∞

E[St+τ+δ − St+δ|dNu
t = 1] (37)

=
ν

2λ̄u∞
(M11 −M12) (38)

= −ν
e−τ(β+αm−αs)e−δ(β+αm−αs)

(
eτ(β+αm−αs) − 1

)
(αm − αs) (2β + αm − αs)

4 (β + αm − αs) 2
(39)

with M = c2(τ)c0(δ)(Λ̄∞ + αdiag(λ̄∞)).

It might be convenient to consider the stock evolution over an infinitesimal interval. From the previous

proposition it is straightforward to deduce

Proposition 13 Given the price impact function 40 then

imp(δ) = lim
τ→0

imp(τ, δ)

τ
(40)

=
ν

2λ̄u∞
(M11 −M12) (41)

= −ν e
−δ(β+αm−αs) (αm − αs) (2β + αm − αs)

4 (β + αm − αs)
(42)

with M = c0(δ)(Λ̄∞ + αdiag(λ̄∞)).

It is often meaningful to consider the cumulative impact of trade on the stock return, it leads to

integrate with respect to δ the above quantity. Simple computations give
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Proposition 14 Given the function imp(δ) of proposition 13 then the cumulative price impact of

trades up to a given time t is

cimp(t) =

∫ t

0
Imp(δ)dδ (43)

=
ν

2λ̄u∞
(M11(t)−M12(t)) (44)

= −ν
(
1− e−t(β+αm−αs)

)
(αm − αs) (2β + αm − αs)

4 (β + αm − αs) 2
(45)

with M(t) =
∫ t

0 c0(δ)dδ(Λ̄∞ + αdiag(λ̄∞)).

Note that if αs > αm then the function is increasing and concave and in that case the shape is similar

to the one obtain in Figure 1 of Dufour and Engle (2000).

3.2 Market Impact in a Buy-Sell Toy Model

As stated before, another aspect of the trading activity presenting both clustering and mean reversion

effects is the sell and buy order arrivals. Time arrivals of buy and sell orders can then be modelled

by a bivariate Hawkes process. Let NBuy
t and NSell

t be the cumulated number of Buy and sell orders

respectively, and let their respective intensities obey:

λBuyt = λ∞ +

∫ t

0
αse
−β̄(t−u)dNBuy

u +

∫ t

0
αme

−β̄(t−u)dNSell
u

λSellt = λ∞ +

∫ t

0
αme

−β̄(t−u)dNBuy
u +

∫ t

0
αse
−β̄(t−u)dNSell

u .

The model is mathematically the same as before in the sense the the matrices α and β in (1) have

very particular forms. Namely, they are given by:

α =

 αs αm

αm αs

 ;β =

 β̄ 0

0 β̄


where αs stands for the self excitation parameter, αm stands for the mutual excitation parameter. The

two intensities lead to a two-dimensional vector λt = (λBuyt , λSellt )> whilst the two jumps processes

give the vector Nt = (NBuy
t , NSell

t )>.

Although the model is similar to the previous one we do not focus the same phenomena. We work are

at a more microscopic level than the mid price up and down jumps of the previous subsection because

19



we are now interested in market orders (that might not lead to a mid-price move).

Notice that we choose symmetric processes in order for the price buy and sell pressures to be equal.

As stated previously, this balance can be achieved even with some asymmetry in the parameters but

we prefer to remain in the simplest possible setting.

In order to estimate the parameters of our model with real data, we need to preprocess TRTH files

to make records of Buy and Sell transaction time arrivals. In fact, transaction files of TRTH do not

contain any flag specifying the sign of the transaction. We then take trade and quotes files of our data

as well as transaction file and apply Lee and Ready algorithm (Lee and Ready, 1991) to sign trades,

obtaining records of buy and sell order arrival times corresponding to our bivariate Hawkes process

Nt = (NBuy
t , NSell

t ). Calibration is done by MLE as before. We conduct the calibration daily on a 2-

year data sample, where we have the futures on Eurostoxx and Dax, and two stocks: BNPP and Sanofi.

Results are reported in Table 3, where they seem to be stable and where likelihood ratio tests clearly

reject the hypothesis of only clustering or only mean reversion.

[ Insert Table 3 here ]

As the primary interest of order book events modelling is the price dynamics, let us consider a model

of price formation based on buy and sell order arrival times. To remain simple, we suppose that every

trade has a unit quantity. Following (Kyle, 1985), the long run price return is assumed to depend

linearly on the imbalance of buy and sell trades. More precisely, denoting by Ft = NBuy
t −NSell

t the

cumulated buy and sell orders imbalance at time t, the price at t writes:

E[P∞] = P0 + λkE[F∞],

where we noted λk the coefficient of linear dependence of price return on buy-sell order imbalance, this

coefficient is known as the Kyle’s Lambda. In (Hewlett, 2006), the author uses the same reasoning in

the case of two independent univariate Hawkes processes, and obtain a simple market impact function.
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In our case, we have:

Pt = Et[P∞]

= P0 + λkEt[F∞].

Moreover, following (Bouchaud et al., 2004), we consider that the price at time t results from the

superposition of market impacts of all the trades that took place prior to t. The market impact of a

trade is attenuated as time passes. Formally, we have:

Pt = P0 +

∫ t

0
I(t− u)dFu. (46)

Equating with these two equalities we obtain:

λkFt + λkEt[F∞ − Ft] =

∫ t

0
I(t− u)dFu. (47)

Additionally, we have:

Et[F∞ − Ft] =

∫ ∞
t

Et[λBuyu − λSellu ]du.

From (9) the expected intensity is equal to:

Et[λu] = (α− β)−1(e(α−β)(u−t) − I)βλ∞ + e(α−β)(u−t)λt.

where λt is the vector of buy and sell intensities (i.e. λt = (λBuyt , λSellt )>).

Using this equality as well as the closed form formulas for the matrix exponential and matrix inverse

for the model considered we arrive to:

Et[F∞ − Ft] =

∫ ∞
t

e−(β̄+αm−αs)(u−t)(λBuyt − λSellt )du

=
λBuyt − λSellt

β̄ + αm − αs
.

Then finally the impact writes:∫ t

0
I(t− u)dFu = λkFt + λkEt[F∞ − Ft]

= λkFt + λk
λBuyt − λSellt

β̄ + αm − αs

= λk(NBuy
t −NSell

t ) + λk
λBuyt − λSellt

β̄ + αm − αs
.
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Then, knowing that:

λBuyt = λ∞ +

∫ t

0
αse
−β̄(t−u)dNBuy

u +

∫ t

0
αme

−β̄(t−u)dNSell
u

and

NBuy
t =

∫ t

0
dNBuy

u .

Similar computations for the sell-side give:∫ t

0
I(t− u)dFu = λk(

∫ t

0
1 +

(αs − αm)e−β̄(t−u)

β̄ + αm − αs
(dNBuy

u − dNSell
u ))

= λk(

∫ t

0
1 +

(αs − αm)e−β̄(t−u)

β̄ + αm − αs
dFu).

So that, the impact of a single trade executed at time 0 as seen at time t is:

I(t) = λk

(
1 +

(αs − αm)e−β̄t

β̄ + αm − αs

)
, (48)

where one can see that this impact decomposes in a permanent impact and a time attenuating one.

This result enables the study the impact of a large order splitting. We have the following result whose

proof is omitted:

Proposition 15 Denote by I(T ) the price impact at time T of a continuum of orders executed over

the interval [0; t] then this function is given by:

I(T ) =

∫ t

0
I(T − s)ds (49)

where the function I is (48) and for the model considered the integral leads to:

I(T ) =

 λk

(
T + (αs−αm)

(β̄+αm−αs)β̄
(1− e−β̄T )

)
T ≤ t

λk

(
t+ (αs−αm)

(β̄+αm−αs)β̄
(e−β̄(T−t) − e−β̄T )

)
T ≥ t.

We illustrate graphically this function, Figure 5 presents a plot of the market impact of an order to

buy 50 shares of stock, executed during 50 seconds at the rate of 1 stock per second. One clearly

sees that the impact increased during the execution time of the order, and then decreases steadily to

attain the permanent impact.

[ Insert Figure 5 here ]
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In the previous computation we suppose that one unit was bought, this hypothesis can be relaxed by

introducing the notion of execution profile as defined for example in (Moro et al., 2009).

We define the execution profile as a function of time f with suport on the invertal [0; t] with
∫ t

0 f(s)ds =

Q which is the total quantity to be executed. With this definition, the impact of the meta order writes

in integral notation:

I(T ) =

∫ T

0
I(T − s)f(s)ds (50)

which is just the convolution of the execution profile and market impact.

4 Conclusion

In this paper we compute explicitly the first and second moments and the autocovariance function of

the number of jumps over a given time interval of a multivariate Hawkes process. These computations

are possible thanks to the affine property of the process and the use of the Dynkin formula.

Using these quantities we compute several statistical properties for a stock dynamic based on the

Hawkes process. It allows us to unify the models Bacry et al. (2013a) and Da Fonseca and Zaatour

(2013). The first one possesses a mean reverting behaviour whilst the second one has a clustering

behaviour. We compute explicitly the the signature plot and analyse the impact of the parameters

on the shape of this function. Furthermore, we compute the diffusive limit which enables to connect

the parameters driving the price at high-frequency with the parameter driving the stock price a low

frequency (i.e. the daily Black-Scholes volatility). Lastly, we compute explicitly the impulse response

function which quantifies the impact of a trade of the stock price. For all these results we can analyse

the impact of the mean reverting and clustering parameters.

We further exploit the results by analysing the price impact of a trade in a Buy and Sell toy model

based on the Hawkes process. We provide an explicit expression and extend the results by computing

the impact of a collection of trades. It allows us to recover the typical pattern of execution of meta

order.
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Although some of the formulas are derived for a specific choice of the matrix parameters most of

the results are valid for general matrices (to the extent that some stability conditions are satisfied).

Within this framework it is possible to consider other important market microstructure problems.

As an example, the lead-lag relationship between two (or more) stocks can be analysed within that

framework. The interaction between different order types (cancellation, amend, etc..) can be easily

quantified and the impact on the daily volatility can be evaluated. Lastly, extending these models by

adding a process for the volume might be feasible but challenging. These interesting problems are left

for future investigation.
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Tables

Symbol Measure λ∞ αs αm β Clustering Mean Reversion

Eurostoxx Mean 0.0175 0.0062 0.0698 0.0958 1364.29 -9.12
Std. dev. 0.0065 0.0082 0.0242 0.0252 415.88 93.49

Dax Mean 0.0661 0.0347 0.0500 0.1019 673.07 404.00
Std. dev. 0.0286 0.0102 0.0158 0.0221 319.35 299.83

BNPP Mean 0.0495 0.2685 0.1792 0.4660 3394.05 12359.29
Std. dev. 0.0220 0.1241 0.0841 0.1919 2612.05 13150.40

Sanofi Mean 0.0345 0.1941 0.1572 0.3691 2969.66 7086.07
Std. dev. 0.0188 0.1182 0.0902 0.1968 2123.99 6553.23

Bund Mean 0.0250 0.0189 0.0792 0.1180 1179.34 68.45
Std. dev. 0.0123 0.0115 0.0226 0.0275 245.24 82.22

Bobl Mean 0.0172 0.0138 0.0673 0.1009 1259.34 5.82
Std. dev. 0.0073 0.0108 0.0226 0.0215 277.01 81.47

Schatz Mean 0.0153 0.0196 0.0662 0.1056 1480.55 27.34
Std. dev. 0.0047 0.0124 0.0210 0.0224 385.31 79.29

JPY Mean 0.0449 0.2516 0.2420 0.5089 4410.78 4780.38
Std. dev. 0.0174 0.1029 0.0941 0.1800 2085.32 2892.44

EURO Mean 0.0622 0.3733 0.3550 0.7360 8956.69 10563.86
Std. dev. 0.0240 0.1255 0.1145 0.1922 4041.59 5433.36

GOLD Mean 0.0902 0.4080 0.3109 0.7300 3486.06 9290.28
Std. dev. 0.0266 0.1481 0.1248 0.2288 2418.24 7088.23

Crude Oil Brent Mean 0.0865 0.4506 0.2411 0.7068 7224.19 13651.24
Std. dev. 0.0265 0.1407 0.0755 0.1838 5580.90 8525.66

Natural GAS Mean 0.0614 0.3503 0.3044 0.6683 3766.40 6345.64
Std. dev. 0.0194 0.1120 0.1121 0.1943 1563.27 2623.62

Sugar Mean 0.0373 0.1998 0.1766 0.3932 1440.07 1868.66
Std. dev. 0.0118 0.0877 0.0861 0.1625 1353.06 1546.63

CORN Mean 0.0337 0.1879 0.1803 0.3861 1521.93 1704.87
Std. dev. 0.0130 0.0609 0.0618 0.1166 762.05 781.92

WHEAT Mean 0.0473 0.2370 0.2104 0.4659 1698.37 2221.75
Std. dev. 0.0168 0.0952 0.0843 0.1644 1220.72 1486.22

Table 1: Calibration results for two years of data. We calibrate daily a bivariate Hawkes process to the
up and down mid price jump times for each symbol. The column Clustering presents the likelihood
ratio statistic when we consider only clustering. The column Mean reversion presents the likelihood
ratio statistic when we consider only mean reversion.
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Symbol λ∞ αs αm β Empirical σ Toy model σ

Eurostoxx 0.0119 0.0474 0.0401 0.1074 24.64% 19.08%
Dax 0.0581 0.0341 0.0491 0.1050 25.75% 23.45%
BNPP 0.0739 0.5287 0.2311 0.7798 56.43% 55.31%
Sanofi 0.0658 0.3503 0.3543 0.7246 31.42% 31.47%
Bund 0.0136 0.0471 0.0410 0.1081 5.35% 4.62%
Bobl 0.0125 0.0465 0.0396 0.1062 4.45% 4.44%
Schatz 0.0108 0.0360 0.0484 0.1044 2.01% 1.86%
JPY 0.0520 0.3320 0.3295 0.6814 10.74% 10.67%
EURO 0.0169 0.1007 0.1017 0.2224 5.49% 5.65%
GOLD 0.0677 0.3168 0.3561 0.6929 14.28% 14.35%
Crude Oil Brent 0.0359 0.1394 0.1394 0.2989 14.04% 14.09%
Natural GAS 0.0495 0.2752 0.2801 0.5744 48.84% 48.70%
Sugar 0.0315 0.1702 0.1642 0.3544 61.24% 61.21%
CORN 0.0591 0.3160 0.2855 0.6215 58.16% 58.08%
WHEAT 0.0642 0.2819 0.2884 0.5903 59.49% 59.46%

Table 2: Median values of asymptotic volatilities as calculated by our toy model, compared to the
realized volatilities of the day. We also put median values of Hawkes model parameters.

Symbol Measure λ∞ αs αm β Clustering Mean Reversion

Eurostoxx Mean 0.0907 0.5674 0.1395 0.7233 3367.51 52672.29
Std. dev. 0.0229 0.1433 0.0598 0.1738 2047.06 22999.03

Dax Mean 0.0938 0.5929 0.1588 0.7663 3496.19 47232.60
Std. dev. 0.0235 0.1408 0.0613 0.1708 3054.18 20459.51

BNPP Mean 0.0427 0.3383 0.0707 0.4263 2006.10 34381.42
Std. dev. 0.0172 0.1358 0.0456 0.1672 1826.07 19204.96

Sanofi Mean 0.0264 0.2063 0.0484 0.2738 1318.24 19197.74
Std. dev. 0.0096 0.0814 0.0368 0.1099 1133.54 8615.12

Table 3: Calibration results for two years of data. We calibrate daily a bivariate Hawkes process to
the time arrivals of buy and sell orders. The column Clustering presents the likelihood ratio statistic
when we consider only clustering. The column Mean reversion presents the likelihood ratio statistic
when we consider only mean reversion.
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Figure 1: Autocorrelation of the number of buy trades (left) and sell trades (right) occurring on
consecutive, non overlapping time interval of length τ=1 minute. We take average values of September
2011. The same plots can be observed for other values of τ . The dashed line presents the significance
threshold of the estimated correlations at a 99% confidence level.
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Figure 2: Autocorrelation of the up (left) and down (right) mid price jumps occurring on consecutive,
non overlapping time interval of length τ=1 minute. We take average values of September 2011. The
same plots can be observed for other values of τ . The dashed line presents the significance threshold
of the estimated correlations at a 99% confidence level.
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Figure 3: Cross correlation of the number of buy and sell trades, where in the left figure sell trades
are lagged, whereas in the right figure buy trades are lagged. Lags are measured in seconds and the
intervals can be overlapping. Time interval length is τ=1 minute. We take average values of September
2011.

0 100 200 300 400 500 600

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Time lag (in seconds)

Co
rre

lat
ion

Eurostoxx
Dax
BNPP
Sanofi

0 100 200 300 400 500 600

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Time lag (in seconds)

Co
rre

lat
ion

Eurostoxx
Dax
BNPP
Sanofi

Figure 4: Cross correlation of up and down jumps of the mid price, where in the left figure down
jumps are lagged, whereas in the right figure up jumps are lagged. Lags are measured in seconds
and the intervals can be overlapping. Time interval length is τ=1 minute. We take average values of
September 2011.
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Figure 5: Market impact of an order to buy 50 shares of stock, executed during 50 seconds at the
rate of 1 stock per second. We took the scaling parameter λk = 1.
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A Appendix

Proof. of Lemma 1.
We apply Dynkin’s formula (5) to f ≡ Nt and taking into account the fact that:

Lf (Xt) = λt,

we obtain

E [Nt] = N0 + E
[∫ t

0
λsds

]
.

Using Fubini-Tonnelli’s theorem we have:

E [Nt] = N0 +

∫ t

0
E [λs] ds. (51)

Differentiating this integral equation gives (7). This equation could have been obtained by recalling
that Nt −

∫ t
0 λsds is a martingale, by definition of the intensity of a point process, as explained in

Brémaud (1981). We nevertheless quote the Dynkin formula method as the same reasoning will prove
useful for other functions as well.

To obtain the ODE (6) we rely again on Dynkin’s formula. Following Errais et al. (2010), let f ≡ λt
in (4) then as we have:

Lf (Xt) = β (λ∞ − λt) + αλt.

Dynkin’s formula leads to:

E [λt] = λ0 + E
[∫ t

0
(β (λ∞ − λs) + αλs) ds

]
= λ0 + βλ∞t+ (α− β)

∫ t

0
E [λs] ds,

where as before, we used Fubini-Tonnelli’s theorem to swap the integration and expectation opera-
tors. Taking the differential with respect to t yields the ordinary differential equation satisfied by the
expected intensity (6).

Proof. of Lemma 4
We start with

I1 = E
[
(Nt+τ −Nt)(Nt+τ −Nt)

>
]

= E
[
Nt+τN

>
t+τ

]
− E

[
Nt+τN

>
t

]
− E

[
NtN

>
t+τ

]
+ E

[
NtN

>
t

]
(52)

= 2E
[
NtN

>
t

]
+

∫ t+τ

t
E
[
λsN

>
s

]
+ E

[
Nsλ

>
s

]
+ diag(E [λs])ds− E

[
Nt+τN

>
t

]
− E

[
NtN

>
t+τ

]
(53)
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where from (52) to (53) we used (14). Moreover, we have

I2 =

∫ t+τ

t
E
[
λsN

>
s

]
ds

=

∫ t+τ

t
e(α−β)(s−t)E

[
λtN

>
t

]
ds+

∫ t+τ

t

∫ s

t
e(α−β)(s−u)

{
βλ∞E

[
N>u

]
+ E

[
λuλ

>
u

]
+ αdiag(E [λu])

}
duds

=

∫ t+τ

t
e(α−β)(s−t)E

[
λtN

>
t

]
ds+

∫ t+τ

t

∫ s

t
e(α−β)(s−u)

{
βλ∞E

[
N>t

]
+ βλ∞

∫ u

t
E
[
λ>r

]
dr

}
duds

(54)

+

∫ t+τ

t

∫ s

t
e(α−β)(s−u)

{
E
[
λuλ

>
u

]
+ αdiag(E [λu])

}
duds (55)

where we used successively (15) and (10). The fifth term of (53) is, after using the ODE for E [Nt]
and conveniently conditioning, equal to

I3 = E
[
Nt+τN

>
t

]
= E

[(
Nt +

∫ t+τ

t
(c0(s− t)λt + c1(s− t))ds

)
N>t

]
. (56)

The first term of (56) will cancel with the first term of (53), the second term of (56) with will cancel
with the first term of (54) whilst the last term of (56) with the second term of (53) when t → +∞.
Therefore, for t large we have

I1 =

∫ t+τ

t

∫ s

t
e(α−β)(s−u)

{
βλ∞

∫ u

t
E
[
λ>r

]
dr + E

[
λuλ

>
u

]
+ αdiag(E [λu])

}
duds︸ ︷︷ ︸

K1

(57)

+K>1 +

∫ t+τ

t
diag(E [λs])ds (58)

Replacing in K1 the expectations involving λt by their long term values we obtain

K1 = c4(τ)βλ∞λ̄
>
∞ + c5(τ)(Λ∞ + αdiag(λ̄∞)) (59)

c4(τ) = −(α− β)−1 τ
2

2
− (α− β)−2τ + (α− β)−3

(
e(α−β)τ − I

)
(60)

c5(τ) = −(α− β)−1τ + (α− β)−2(e(α−β)τ − I) (61)

As c4(t) is related to c5(τ) through

c4(τ) =

(
τ2

2
− c5(τ)

)
(−(α− β)−1) (62)

K1 can be rewritten as

K1 =
τ2

2
λ̄∞λ̄

>
∞ + c5(τ)(Λ̄∞ + αdiag(λ̄∞)).
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Taking into account

lim
t→∞

E [Nt+τ −Nt]E
[
(Nt+τ −Nt)

>
]

= τ2λ̄∞λ̄
>
∞

we deduce the result.

Proof. of Lemma 5
We need to determine

I4 = E
[
(Nt4 −Nt3)(Nt2 −Nt1)>

]
= E

[
Et3 [(Nt4 −Nt3)] (Nt2 −Nt1)>

]
(63)

= E
[
(c2(τ2)λt3 + c3(τ2))(Nt2 −Nt1)>

]
(64)

= c2(τ2)c0(δ)E
[
λt2(Nt2 −Nt1)>

]
+ c2(τ2)c1(δ)E

[
(Nt2 −Nt1)>

]
+ c3(τ2)τ1λ̄

>
∞ (65)

where from (63) to (64) we used (10), and from (64) to (65) we used (9) as well as (13). Taking into
account that

E
[
λt2(Nt2 −Nt1)>

]
= E

[
λt2N

>
t2

]
− E

[
λt2N

>
t1

]
= e(α−β)τ1E

[
λt1N

>
t1

]
+

∫ t2

t1

e(α−β)(t2−s)
{
βλ∞E

[
N>s

]
+ E

[
λsλ

>
s

]
+ αdiag(E [λs])

}
ds

−
(
c0(τ2)E

[
λt1N

>
t1

]
+ c1(τ2)E

[
N>t1

])
.

The first term of the last equation simplifies with last-but-one term. Replacing E
[
N>s
]

by its integral
given by (10) allows us to simply the last term of the equation and we are left with

E
[
λt2(Nt2 −Nt1)>

]
=

∫ t2

t1

e(α−β)(t2−s)
{
βλ∞

∫ s

t1

E
[
λ>u

]
du+ E

[
λsλ

>
s

]
+ αdiag(E [λs])

}
ds

Taking the long term values for the expectations (involving only the process λt) we get

E
[
λt2(Nt2 −Nt1)>

]
= c5(τ1)βλ∞λ̄

>
∞ + c2(τ1)

(
Λ∞ + αdiag(λ̄∞)

)
. (66)

As c5(τ) is related to c2(τ) through

c5(τ) = (τ − c2(τ)) (−(α− β)−1) (67)

when used in conjunction with (66) in (65) leads to, after taking into account (13) for the second term
and the definition for λ̄∞ given by (11), it gives

I4 = c2(τ2)c0(δ)
{
τ1λ̄∞λ̄

>
∞ + c2(τ1)

(
Λ̄∞ + αdiag(λ̄∞)

)}
+ c2(τ2)c1(δ)λ̄>∞τ1 + c3(τ2)τ1λ̄

>
∞.
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Taking into account the equalities c3(τ) = (τ−c2(τ))λ̄∞ and c1(δ) = (I−c0(δ))λ̄∞ then if we subtract
to I4 the following quantity

lim
t1→∞

E [Nt4 −Nt3 ]E
[
(Nt2 −Nt1)>

]
= τ2τ1λ̄∞λ̄

>
∞

we obtain the result.

Proof. of Lemma 6
Under the hypothesis of the lemma we can decompose the expectation as

I5 = E[(Nt4 −Nt3)(Nt2 −Nt1)>]

= E[((Nt4 −Nt2) + (Nt2 −Nt3)) (Nt2 −Nt1)>]

= E[(Nt4 −Nt2)(Nt2 −Nt1)>] + E[(Nt2 −Nt3)(Nt2 −Nt1)>]

= E[(Nt4 −Nt2)(Nt2 −Nt1)>] + E[(Nt2 −Nt3)(Nt2 −Nt3)>]

+ E[(Nt2 −Nt3)(Nt3 −Nt1)>].

Similarly, if we decompose the product E[Nt4 − Nt3 ]E[(Nt2 − Nt1)>] then using Lemma 5 we obtain
the announced result.

Proof. of Lemma 10
The volatility is given by

σ2 = lim
n→∞

Var(Sn)

n
(68)

=
ν2

4
E[
(

(Nu
1 −Nu

0 )−
(
Nd

1 −Nd
0

))2
] (69)

+ 2
ν2

4

∞∑
n=1

E[
(

(Nu
1 −Nu

0 )−
(
Nd

1 −Nd
0

))((
Nu

1+n −Nu
n

)
−
(
Nd

1+n −Nd
n

))
] (70)

=
ν2

4
(Cov(1)11 + Cov(1)22 −Cov(1)12 −Cov(1)21) (71)

+ 2
ν2

4

(
Σ̄11 + Σ̄22 − Σ̄12 − Σ̄21

)
. (72)

Define M = Cov(1) + 2Σ̄ then we obtain the result.

Proof. of Proposition
Given τ0, τ and δ the quantity

E[(St+τ+δ − St+δ)(Nu
t+τ0 −N

u
t )] =

ν

2
E[(Nu

t+τ+δ −Nu
t+δ)(N

u
t+τ0 −N

u
t )] (73)

− ν

2
E[(Nd

t+τ+δ −Nd
t+δ)(N

u
t+τ0 −N

u
t )]. (74)

As we have:

I1 = E[(Nu
t+τ+δ −Nu

t+δ)(N
u
t+τ0 −N

u
t )]

=

∞∑
i=0

E[Nu
t+τ+δ −Nu

t+δ|Nu
t+τ0 −N

u
t = i]× P [Nu

t+τ0 −N
u
t = i]× i

∼ E[Nu
t+τ+δ −Nu

t+δ|Nu
t+τ0 −N

u
t = 1]× λut τ0
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where the last equation is for τ0 small enough. Then, taking the limit τ0 → 0, we get for t large:

lim
τ0→0

I1

τ0
∼ E[Nu

t+τ+δ −Nu
t+δ|dNu

t = 1]λ̄u∞.

Moreover, we have:

E[(Nu
t+τ+δ −Nu

t+δ)(N
u
t+τ0 −N

u
t )] = (Cov1(τ0, τ, δ))11,

we deduce:

E[Nu
t+τ+δ −Nu

t+δ|dNu
t = 1] =

1

λ̄u∞
(c2(τ)c0(δ)(Λ̄∞ + αdiag(λ̄∞)))11.

Similar computations can be carried out for (74) and the announced result is obtained.

Proof. of Proposition 9
The computations are analytically tractable as we have closed formula for the inverse and exponential
of a 2x2 symmetric matrix:

M =

(
a b
b a

)
(75)

eM =
ea−b

2

(
1 + e2b −1 + e2b

−1 + e2b 1 + e2b

)
(76)

and the inverse of M writes:

M−1 =
1

a2 − b2

(
a −b
−b a

)
(77)

yielding:

M11 +M22 −M12 −M21 = 2Λ

(
κ2τ +

(
1− κ2

) (1− e−τγ)

γ

)
so that the expected signature plot is given by:

E[Ĉ(τ)] =
ν2

4τ
(M11 +M22 −M12 −M21)

which leads to the announced result.
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