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Abstract

In investigating the effects of algorithmic trading stock market liquidity and commonality in
liquidity in different market conditions in an eteanic limit order market, we find algorithmic
trading increases stock liquidity by narrowing cqeebaind effective bid—ask spreads. Furthermore,
algorithmic trading decreases commonality in ligiyidthis finding is robust across a variety of
liquidity measures. We also find algorithmic traglimarrows the quoted and effective spreads to
a much lesser extent following extreme market dionl, particularly after large stock market
declines. However, the effect of algorithmic tragion commonality in liquidity does not differ

following large market declines.
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The Role of Algorithmic Trading in Stock Liquidity and Commonality in Electronic Limit

Order Markets

|. Introduction

Recent technological advancements have led to tbifepation of a new form of trading,
algorithmic trading (AT) which relies on computelg@ithms to make automatic trading
decisions, submit orders, and manage orders aftenission. High frequency traders, a subset
of algorithmic traders, have a differentiating stgac feature of adopting very short stock
holding horizons of as little as a millisecond (fodetailed description, see Hasbrouck and Saar
2009). In the past decade, AT has come to dommaiey developed stock markets, prompting
many stock exchanges to upgrade their tradinggelat accordingly. In this study, we take an
encompassing approach to understanding the impa&T @n an electronic limit order market
by examining its effects on three dimensions, ngm@l) cross-sectional variations in spreads
and market depths, (2) commonality in liquidity,da8) market liquidity after large market
declines.

A growing body of literature seeks to understamal itnpact of AT on markets but these
studies provide conflicting results. Some studiegi@a that AT can benefit market participants
and reduce transaction costs by increasing congetiamong liquidity providers and
eliminating information friction (e.g., Hendershoiones and Menkveld 2011; Riordan and
Storkenmaier 2012). Others emphasize the detrirhefitects of AT on market quality, because
algorithmic traders, through their ability to presanformation rapidly, can exploit other traders

such as those who trade for liquidity reasons (€artea and Penalva 2012). Although insightful,



this literature offers little information about tHeehavior of algorithmic traders in volatile
markets, nor does it specify the effects of AT ommonality in liquidity, a form of systematic
risk that affects asset pricing and is more intethseng large market declines (Hameed, Kang
and Viswanathan 2010).

To investigate these issues, we consider an etectlimit order market, the Tokyo Stock
Exchange (TSE), using data from 2007 to 2010. TBE i a specifically suitable setting for this
analysis for several reasons. First, it represankarge, well-developed electronic limit order
market, comparable to many other international argbs; it was the second market to adopt
electronic trading in 1982, after the Toronto St&sichange in 1977 (Jain 2005). In a limit order
market, algorithmic traders can act as either dliquisuppliers or liquidity demanders, so their
influence on liquidity may differ compared with thabserved in hybrid markets, such as the
New York Stock Exchange. Second, the TSE adopteehatrading platform, Arrowhead, on 1
January 2010, specifically to cater to the highespeequirements of algorithmic traders, so it
provides an ideal experimental setting. Third, Japanese stock market experienced far fewer
extreme market events during the sample period ddiother developed markets, such as the
U.S. and Europe, which bore the brunt of notablekh#gtcies (e.g., Lehman Brothers) and a
series of sovereign credit rating downgrades. Beedlie Japanese market was less affected by
these extreme events, this setting should helpongpare more clearly the effects of AT on
liquidity in periods of normality and uncertainty.

We measure the amount of AT by examining messegjéct obtained from intraday
transactions data. Biais and Weill (2009) provideheoretical support by showing that the ratio
of messages to volume increases with the rate mthwhvestors can contact the market. This

measurement is first used in Hendershott, Joned/amiveld (2011) as an AT proxy on the U.S.
2



stock market; and Boehmer, Fong and Wu (2012)yaiys measure to the AT activities across
39 international exchanges. In this study, we chdosuse this proxy for AT as it enables us to
examine the trading by algorithmic traders, a pneld@mn for high frequency trading (HFT), in a
wide cross-section of stocks listed on the TSEsH®pproach enhances the generalizability of
our study to the whole market, instead of a sadactf stocks. To reflect the full picture of
market liquidity, we consider measures that captwth spreads and market depths. These
liquidity measures are the quoted bid—ask spreHidctve spread, market depth at the best
prices, and market depth at five levels of quotecks.

Our empirical analysis shows that AT is associatét lower quoted and effective bid—
ask spreads but also lower market depth in sonmescsghen the effective spread is decomposed
into realized spread and adverse selection cost$ing that the reduction in the effective spread
is mainly due to decreases in the adverse selectish Furthermore, regardless of the liquidity
measures employed, the association of individuatkstiquidity with market-wide liquidity
weakens in the presence of more AT. These findamgsobust to the adoption of the Arrowhead
trading platform as an instrumental variable.

Algorithmic traders also behave differently duripgriods associated with high levels of
market uncertainty. Contrary to the results relatedormal market conditions, the associations
between AT and liquidity measures weaken aftereexér market movements, particularly after
market declines. In other words, AT improves spiieased liquidity less in the aftermath of
extreme market conditions than it does during nbrmarket times. However, we find no
significant changes in the association between Ad leguidity commonality following extreme

markets.



Our research adds to a fast growing body of liteeaon AT, including studies focusing
on HFT. Several studies analyze the effects of ATnmarket liquidity using data from U.S.
equity markets (e.g., Hasbrouck and Saar 2009; étehdtt, Jones and Menkveld 2011),
international foreign exchange markets (e.g., Chdbet al. 2011; Jovanovic and Menkveld
2012), or futures markets (Kirilenko et al. 201These studies assess the effects of AT on cross-
sectional variations in market liquidity but havat onsidered commonality in liquidity. To the
best of our knowledge, our study offers the firshraination of the relation between AT and
commonality in liquidity.

Moreover, our study deepens understanding of tieete of AT on liquidity after large
market declines. To date, only a few studies examil in the presence of market uncertainty.
Kirilenko et al. (2011) focus on AT behavior arouadflash crash” event on 6 May 2010.
Rather than restricting their analysis to one em&enarket event, Zhang (2010), Hasbrouck and
Saar (2012), and Boehmer, Fong and Wu (2012) amayanger sample period and demonstrate
the effects of AT or HFT on stock return volatiléyd liquidity in periods of market stress. We
instead address the effects of AT immediately atiege markets movements, when market
participants and financial intermediaries must érdd the face of substantial information
uncertainty. Particularly following large marketctiees, market liquidity may not be available
because investors are eager to unwind their pasigmd financial intermediaries withdraw from
providing liquidity (Brunnermeier and Pedersen 2088meed, Kang and Viswanathan 2010).
As we document in our findings, in uncertain markenditions the positive effects of AT on
market liquidity are indeed moderated.

In Section Il, we outline some existing literatuaad discuss our research questions.

Section Il contains a description of our data eggbarch methods. In Section IV, we discuss the
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effect of AT on liquidity and analyze the effect AT on commonality in stock liquidity in
Section V. The analysis of the role of AT duringrexne market conditions appears in Section

VI, before we conclude with a discussion of impiicas in Section VII.

Il. Related Literature

The global proliferation of AT has prompted a rdpigrowing number of studies that analyze
the impacts of AT and HFT on market environmentkh@ugh this literature remains in its
infancy, it already is marked by controversy aboav AT affects market quality. We discuss, in

detail, both theoretical and empirical findingghis realm.

A. Effect of Algorithmic Trading on Market Quality

Computerized AT and HFT have shortened the timentheket takes to respond to news events
and dramatically increased the speed of transactiGonsidering this faster response to news
events, there are good reasons to think that ATrargs market quality. Unlike their human
counterparts, machines can process vast amountgoomation in a fraction of the time that
humans would require. Thus AT can considerably cedhe monitoring costs of market makers
and enhance liquidity (Foucault, Kadan and Kand#l3}! In addition, algorithmic traders
gather information simultaneously across differemthanges and in different but related
securities, which helps them set more efficientgsiand therefore decreases the transaction

costs of liquidity traders (Gerig and Michayluk 2QJovanovic and Menkveld 2012). Even if

! In their model, Foucault, Kadan and Kandel (2048w that the effect of ATs on liquidity dependswainether
the reduction in monitoring costs mainly affectguidity providers or suppliers. When ATs mainly ued
monitoring costs for liquidity demanders, the ratevhich liquidity gets consumed is higher thanridie at which it
is supplied.
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ATs are uninformed, their automated liquidity pen likely increases competition among
liquidity suppliers and reduces transaction coStgtanic and Kirilenko 2010).

However, some theories highlight the negative redéies of algorithmic trading. For
example, Cartea and Penalva (2012) model the ietiating role of high frequency traders
between liquidity traders and market makers, shelt traders exacerbate the price impact of
liquidity traders by extracting trading surplus hwvitheir speed advantage. Biais, Foucault and
Moinas (2012) analyze the trading equilibrium wimégh frequency traders are present and find
that HFT enables fast traders to process informatiefore slow traders, giving rise to adverse
selection costs. Using an arbitrage-free pricingreach, Jarrow and Protter (2011) arrive at a
similar conclusion: The speed advantage of highueacy traders creates arbitrage opportunities
at the expense of ordinary traders and thus makegrarket less efficient. Yet theoretical
studies are inconclusive thus far about the relahg between AT and market liquidity, with
different conclusions drawn depending on the sgrateand market environments assumed.

Despite the theoretical debate, most empiricalifigs that identify particular groups of
algorithmic traders or construct proxies for ATi(sintraday transactions data) suggest that AT
actually increases market quality. For example, déeshott and Riordan (2011) examine
algorithmic trades on 30 DAX stocks traded on theufSche Boerse in January 2008 and find
that the more efficient quotes that ATs place léadnore efficient market prices. Brogaard
(2010) analyzes the trading behavior of 26 higlqdency traders on 120 NASDAQ stocks and
finds evidence that they provide the best bid aidcuotes for a significant portion of the day,
but they contribute to only one-fourth of the boaddpth, compared with non-high frequency

traders. Despite their insights about the actuatlig strategies of algorithmic and high



frequency traders, the analyses in these studeedimited to a selected sample of stocks and
may not be representative of the market overall.

Another set of studies uses proxies to measurextent of AT, which supports analyses
of a greater cross-section of the market. For exanhpendershott, Jones and Menkveld (2011)
use the arrival rate of messages as a proxy foad find that AT narrows spreads and reduces
adverse selection costs, particularly for largelsdo Using a broad sample of stocks across 39
exchanges, Boehmer, Fong and Wu (2012) reach dasigonclusion. Hasbrouck and Saar
(2012) use reference numbers supplied with NASDA@gactions data to link each individual
limit order with its subsequent cancellation or @¢en and propose a HFT measure based on
“strategic runs”. Their results suggest that tregreased HFT activities lead to lower spreads and
higher displayed depth in the limit order book. Bar analysis, we use the AT proxy proposed
by Hendershott, Jones and Menkveld (2011) as ibleraus to examine all stocks listed on the
TSE.

Compared with extant empirical studies, our redeaffers two new insights. First, we
base our analysis on the TSE, an electronic limieo market. The effect of AT on market
liquidity may differ from the influences documenteding data from U.S. exchanges. Prior
studies of electronic limit order markets suggesgioasible blurring of the distinction between
liquidity providers and liquidity demanders (Haslbeck and Saar 2008)Because algorithmic
traders can either demand or supply liquidity, tle¢ effect of AT on the liquidity of an
electronic limit order market is unclear and wortifyempirical research (Foucault, Kadan and

Kandel 2013). Second, the implementation of the teding platform by the TSE in 2010,

2 Empirical evidence offered by Brogaard (2010) afehdershott and Riordan (2011) confirms that higlydency
traders can be either liquidity providers or densasd
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designed specifically to cater to the infrastruettequirements of AT, constitutes an exogenous
event for the AT in our analysis. Through an evstudy, we largely mitigate endogeneity

concerns over the relationship between AT and néidudity.

B. Effect of Algorithmic Trading on Commonality in Liquidity

As liquidity means more than an attribute of a kngsset, many studies investigate how
individual stock liquidity co-moves with market-vadiquidity, in terms of both spreads and
depths. The phenomenon is not limited to U.S. ntarkemple evidence suggests the existence
of commonality in liquidity internationally (see rf@xample, Brockman, Chung and Pérignon
2009; Chordia, Roll and Subrahmanyam 2000; Haslirand Seppi 2001; Karolyi, Lee and van
Dijk 2012). Recognizing commonality in liquidity imherently important, for at least two
reasons. First, prior studies (Acharya and Pedet688B; Lee 2011) suggest that commonality in
liquidity poses a systematic liquidity risk, withsegnificant bearing on asset pricing. Second,
theoretical work on the funding constraints fowuldjty provision (Brunnermeier and Pedersen
2009; Kyle and Xiong 2001) predicts that liquiddgmand increases sharply and supply falls
during market declines as investors seek to ligeidlaeir positions and liquidity suppliers hit
their funding constraints. In turn, commonality liquidity should intensify during market
turmoil.

Motivated by the importance of liquidity co-movemhewe explore the effects of AT on
the commonality in liquidity. A priori, we proposkat AT reduces commonality in liquidity in
normal market conditions. Existing research (Broda2010; Hendershott and Riordan 2011;
Jovanovic and Menkveld 2012) suggests that algoithraders automate information gathering

and processing and therefore are better informad ¢klow) liquidity traders. A high level of



private information acquisitions by algorithmic deas thus translates into low levels of co-
movements with market-wide liquidity. Conceptualliyis effect is similar to commonality (or
lack of) in stock returns (i.e., stock price nomdyronicity). In the spirit of Grossman and
Stiglitz (1980), information trading or a transparéenformation environment corresponds to a
lower level of stock price commonality because gevinformation gets incorporated quickly
into stock prices (Morck, Yeung and Yu 2000). Besmaunformation is a common driver of
liquidity and stock returnalgorithmic traders should promptly process artcoadnformation,
which decreases commonality in liquidity.

However, our prediction may be tempered by theetated trading of algorithmic traders.
That is, the strategies they adopt are more cdoectllnan are those of non-algorithmic traders in
the U.S. stock market (Brogaard 2010) and forexghange markets (Chaboud et al. 2011). In
addition, Hendershott and Riordan (2011) find enateof AT clustering in time in the 30 DAX
stocks on the Deutsche Boerse. The correlatedngaai algorithmic traders could increase
commonality in liquidity. Thus, we investigate emgally how AT, on average, affects

commonality in liquidity.

C. Liquidity Effect of Algorithmic Trading in Extre me Market Conditions

The recent dominance of AT in many stock exchamgesprovided an impetus for researchers
to attempt to understand its effect, particularty lauidity during periods of market stress.

Several studies report positive effects of AT auildity, but the joint CFTC/SEC report on the

3 Karolyi, Lee and van Dijk (2012) provide strongdmnce that commonality in liquidity and commongalit stock
returns are positively correlated over time in atradl 40 countries they study.
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U.S. flash crash of 6 May 2010 conveys the regtiktmncerns about the risk of AT when the
market experiences high volatility.

Prior literature offers few empirical insights anbhow algorithmic traders affect market
liquidity during extreme market conditions. Kirilem et al. (2011) examine high frequency
trading in the futures market around the flash ltras6 May 2010 and find that though the
traders did not trigger a crash, they exacerbatatken volatility. Hasbrouck and Saar (2012)
study the market impact of HFT in June 2008 follogvihe fire sale of Bear Stearns in March.
Their results conflict in that they conclude thaFTHenhances market quality during stressful
market times. Instead of restricting their analywisbrief periods of extreme market events,
Boehmer, Fong and Wu (2012) and Zhang (2010) examdiRT using a longer sample period
with multiple market volatility episodesThey indicate that HFT worsens market quality acbu
the world.

We examine the AT behavior in TSE stocks duringesxe market conditions, which we
identify on the basis of the historic mean of tharket index return (Hameed, Kang and
Viswanathan 2010). However, unlike most prior reseave use a longer sample period, rather
than focusing on specific events, to be represeetaif market conditions in general and
generalize our results more widely. We also anallyeesffect of AT on commonality in liquidity

during market stress whereby commonality in ligtyithas been shown to increase.

* See http://www.sec.gov/news/studies/2010/markeitsvesport.pdf.

® Specifically, Zhang (2010) studies all stocks gedeby CRSP and Thomson Reuters Institutional Higkli
databases during 1995-2009 and finds that theiyp®msibrrelation between HFT and market volatilibcieases
with greater market uncertainty, on basis of thd?S&0 VIX implied volatility index. Boehmer, Fongnd Wu
(2012) extend the analysis to an international $ampstocks from 39 exchanges from 2001 to 20G9 srow that
algorithmic trading lessens market liquidity andraens market volatility when market making is didil.
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[ll. Sample and Data Description

A. Institutional Background

According to annual statistics, the TSE is thed@rgest exchange in terms of the total market
capitalization of its listed firms at USD3,827 lmh (World Federation of Exchanges 2010). It
thus ranks behind only the New York Stock ExchaagelSD13,394 billion and the NASDAQ
OMX at USD3,889 hillion. It also is the largest Baage to operate as a pure electronic order—
driven market, without market makers; its tradirgdumne in 2010 was USD3,793 billion. The
TSE operates two trading sessions each day: a ngpsession from 9:00-11:00 am and an
afternoon session from 12:30-3:00 pm. Similar toiynarder-driven markets with continuous
trading, call auctions open and close trading &mhesession.

The TSE introduced a new trading platform, Arroatheon 1 January 2010, with the
specific aim of facilitating AT on the Japanesecktmarket. It prompted a substantial increase in
the number of orders placed on the exchange, wjtbrts indicating an average daily increase
from 6.72 million in 2009 to 8.24 million in 2010¢kyo Stock Exchange 2011). The turnaround
time, from accepting the order at the participatgisninal to booking the order at the exchange
server (i.e., order book entry latency) is apprately 2 milliseconds, similar to those reported
for the fastest HFT system on the NASDAQ (Hasbroat Saar 2012).

Together with this implementation of the new treiplatform, the TSE amended its
trading rules. Of particular importance to our stusl the change in the tick size structure; the

introduction of more tick size intervals increasied number of intervals from 9 to The new

® Prior to 2010, the price (in JPY) and minimum tgike (in parentheses) weg&,000, (1):<3,000, (5);<30,000,
(10); <50,000, (50);<300,000, (100);<3,000,000, (1000);<20,000,000, (10,000)<30,000,000, (50,000);
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intervals then decreased the tick size for stookhiose price ranges. For example, the tick size
for stocks trading in the price range of 3,000,208 yen fell from 10 to 5 yen. This change may
cause a decrease in the bid—ask spread for affetitekls, a potential impact that we address in

our robustness tests.

B. Sample Selection

We construct algorithm trading and stock liquidityeasures using intraday transactions data
obtained from the Nikkei Economic Electronic Datsdé&ystem. The database comprises real-
time tick-by-tick data for all stocks listed on tA&E, where the transaction records are time-
stamped to the nearest minute prior to January 20MDto the nearest second after January
2010. Price, order flow, and volume information axailable for a wide spectrum of common
stocks in Japan. This detailed, comprehensive dagals the best known trading data source on
the Japan market and has been used widely in pregtoidies (e.g., Ahn et al. 2005; Ohta 2006).
Due to the scarce AT activities in the years pte2010, our sample period runs from
January 2007 to December 2010/e focus on common stocks listed on the TSE amdyap

several filters to form the final sample. First, @clude trading days without afternoon sessions

and >30,000,000, (100,000). With the implementatibrthe Arrowhead trading platform, the price (iRY) and

minimum tick size (in parentheses) becamed00, (1);<5,000, (5);<30,000, (10)<50,000, (50)<300,000, (100);
<500,000, (500);<3,000,000, (1000);<5,000,000, (5000);<30,000,000, (10,000):<50,000,000, (50,000);
and >50,000,000, (100,000).

" Algorithmic trading is an outcome of recent adwemin technology. Chaboud et al. (2011) observerg small

portion of algorithmic trading prior to 2006 in agn exchange markets. Hendershott, Jones and MiEhiR011)

also show a sharp increase in algorithmic tradifigralanuary 2003, which coincided with the intrciilon of

Autoquote on the NYSE, where new quotes are autoaligtdisseminated when there was a relevant chamghe

limit order book. The TSE introduced Arrowhead odahuary 2010 to boost automated trading in thankge
market. Before then, algorithmic trading was lirditey trading platform capacity constraints.
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to avoid the holiday effecfsSecond, to mitigate bid—ask bounce concerns, westatks with a

price of less than 10 Japanese yen. Third, we dgctiock-day observations, if the stock on a
particular day has less than five trades executeddontinuous auction session with positive bid
and ask prices. Fourth, we exclude the specifity dgread measure if its value on a particular
day is greater than 20%. After applying these rBlteour final sample consists of 1,564,988

stock-day observations from 1,837 unique stockarsipg 978 trading days.

C. Algorithmic Trading Measure

Since we cannot differentiate orders placed bymapeder from those placed by humans, in this
study we use electronic message traffic as a pfaxAT. We define electronic message traffic
as the sum of quote updates on a given tradingTag.AT proxy has received strong support
from existing literature. Biais and Weill (2009)opide theoretical support for this measure by
demonstrating that the ratio of electronic messagesolume rises with the rate at which
investors can contact the market. Empirically, tmsasure has been applied by Hendershott,
Jones and Menkveld (2011) to a U.S. sample and dshBer, Fong and Wu (2012) to an
international sample.

A caveat associated with the use of a raw eleitnmessage traffic measure is that this
measure rises with trading volume, even if AT remastable (see Figure 1), leading to a
spurious relationship between AT and electronic sags traffic. To avoid misleading
interpretations, we normalize electronic messaaf@idrby dividing the dollar trading volume by

the aggregate electronic message traffic on a ghagling day and multiplying this ratio by —1.

8 In Japan, stock trading in the afternoon sessias suspended the day prior to major national faistinamely, in
our sample, on 4 January 2007, 28 December 200@ndary 2008, 30 December 2008, and 5 January d0@9.
implementation of the new trading system elimindtegse half-holidays.
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A higher value of this proportional measure indésah higher level of AT. Table 1 summarizes
our descriptive variable statistics; consistenthwtite time trend in Figure 1, the mean and
median value of the AT proxyTrade increases steadily over our sample period. Itiquaar,
the mean value oATradeincreases from a low of —0.369 in 2007 to a higr@076 in 2010,

and the median values exhibit similar upward pager

D. Liquidity Measures

The challenge associated with measuring stockdityis long standing (Goyenko, Holden and
Trzcinka 2009; Korajczyk and Sadka 2008). In aerafit to disentangle the effects of AT on
various aspects of stock liquidity, we adopt spuldity measures: quoted spread, effective
spread, realized spread, adverse selection cogumeganarket depth at the best bid/ask prices,
and aggregated market depth at the first five pieeels. Noting the persistence of seasonality
effects across liquidity measures, we compute &fjustock liquidity measures, similar to those
used by Hameed, Kang and Viswanathan (2010), thaugh one modification; that is, we
include price zone dummies. The introduction of Ameowhead trading system led to a change
in the tick size for some stocks. Introducing pizoae dummies addresses the effects of tick size

changes. Specifically, we adjust our liquidity me&as for stock on dayt as follows:

4 11 10
(1) Liqi,t = Z d] DAYi,t + Z m] MONTHi,t + Z pj PRICEi_t + Ad]_llqlt
j=1 j=1 j=1

whereDAY; . is the day of the week dummMONTH;, is the month dummy, an®RICE;,
denotes the price zone dummy. We run this regnessiodel for each stock throughout the
sample period and use the estimated residual, dmguthe interceptdd;j_liq;, , to measure

stock liquidity in our subsequent empirical anaty/se
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The first two liquidity measures, quoted spread affective spread, reflect aggregate
stock liquidity. Quoted spread refers to the ddéfece between the bid and ask price, scaled by
the midpoint of bid and ask prices in each transaciThe effective spread for stockn thejth
transaction can be computed as follows:

(2) ESpread;; = D;j(P;; — M; ;) /M, ;
whereD; ; equals 1 if the trade is buyer-initiated and —4elller-initiatedP; ; is the trade price;
andM; ; refers to the midpoint of the bid and ask pricesc&ise the TSE is an order-driven
market and all transactions occur at the best bakk prices, the initiator of a transaction can be
identified with certainty. According to the summastatistics of these two spread measures in
Table 17 the sample mean values of the quoted and effesfivead measures are 0.0029 and
0.0023, respectively, largely comparable with thdi. counterparts (Goyenko, Holden and
Trzcinka 2009). This indicates that the Japanesekgnarket is highly liquid and it thus serves
as an appropriate environment for AT. Additionathe time patterns of the two spread measures
coincide with significant global and domestic fic&l events during the same period. For
example, the mean quoted spread reaches its higlvesiof 0.0035 in 2008, at the onset of the
global financial crisis, and declines to 0.0022@10 due to the resilient financial recovery (e.g.,
Campello, Graham and Harvey 2010; lvashina andr&thi 2010; Lang and Maffett 201*).

To investigate how AT affects stock liquidity, \decompose the effective spread into its
inventory component (i.e., revenues for liquidityoyiders) and adverse selection component

(i.e., gross losses to informed liquidity demanylefse former can be measured by the realized

° The spread measures in Table 1 are multiplieddyak presentation.

9 The global financial crisis, stemming from the UbBnking sector, spurs renewed interest in varimasmce and
economics issues; most studies, including Ivashimh Scharfstein (2010), Campello, Graham and Haf2e%0),
and Lang and Maffett (2011) identify 2008 as tharyaf the onset of the crisis.
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spread over the five-minute time interval; thedais measured by the price impact of a trade
over the same time interval. The realized spr&fsread for stocki on thejth transaction is
defined as:

(3) RSpread;; = D; j(P;j — My j45)/M;
whereM; ;s refers to the midpoint of best quoted prices fivinutes after the trad€. The
adverse selection component of stock liquidity easured as follows:

(4) ASely; = Dy j(M jy5 — My j) /M,
For each spread measure for each stock on eachweagalculate the dollar volume weighted
average across all trades that day. From Tableslghserve a consistent pattern across the year
subsamples. That is, the magnitude of the advetset®n component of stock liquidity is much
higher than that of realized spread, which highBgthe significance of information-based
trading activities.

Finally, we explore market depth at the best Ioid ask prices and at the aggregated five-
level market depth on the limit order book. We defmarket deptiDepth as the total dollar
value of shares available at the best bid/ask gritee five-level market deptlepth§ is the
total dollar value of shares available at the liiest levels of quoted prices. For each stock on
each day, we calculate the average time-weightekehaepth and express the measure in
millions of Japanese yen. Table 1 reports meansthf® entire sample period 2007 -2010, for
Depthand Depth5of 38.24 and 169.68, respectively. The finding thapth5is less than five
times the mean ddepthsuggests greater market depth occurs at the baitalde quoted prices

than at other levels.

1 Following Huang and Stoll (1996), we use the quoigpoint of the subsequent trade in the samerigasiéssion
(i.e., morning or afternoon session) if a traderdfive minutes is not available.
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E. Control Variables

To ensure that observed relationships between Thendasure and stock liquidity are not driven
by other stock characteristics, we control for fetack-level variables (see the Appendix): stock
turnover {Turn), daily stock volatility Yol), the inverse of stock pricén{¢Prc), and the log of
market capitalization Sizg. Stock turnover refers to the number of sharadeu, over the
number of shares outstanding on a given trading Aayhud and Mendelson (1986) show the
bid—ask spread widens as the trading volume andoauwf shareholders decrease, which they
attribute to a clientele effect. In controlling fetock turnover in our analysis, we expect this
variable to be negatively associated with spreadsmes but positively related to market depth
measures.

Substantial literature offers evidence of worsgrstock liquidity during volatile stock
markets. Therefore, we control for stock volatilipmputed as the difference between high and
low stock prices over a given trading day (Bensama Hagerman 1974; Chordia, Roll and
Subrahmanyam 2000). We predict that daily stoclatldly has a negative relationship with
stock liquidity measures. We further control foretinverse of stock price; Benston and
Hagerman (1974) and Stoll (1978) report that stoaksactions costs relate negatively to stock
price. Finally, we account for firm size, measubgdhe natural log of market capitalization on a
particular trading day.

With all these variables winsorized at the top dadtom 0.05% of the full sample
distribution, several interesting findings emergent Table 1. The sample mean Dfirn is
0.055, which indicates a liquid trading environmentthe TSE. Stock volatilityyol, exhibits
the highest mean value of 488.486 and a standardtiba of 2911.342 in 2008 when the global

financial crisis broke out.
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IV. Algorithmic Trading and Stock Liquidity

During various liquidity cycles, algorithmic tradecan act differently, as liquidity providers or
liquidity demanders. Considering the dynamic natafetheir trading algorithm, it remains
unanswered whether and how algorithmic tradingctdfestock liquidity and commonality in
liquidity on a limit order—driven market. We expéothis research question in depth by analyzing

the statistical and economic impact of AT on siftedent liquidity measures.

A. Main Regression Analysis

We first investigate the direct effect of AT onaltdiquidity from 2007 to 2010 by regressing a
wide range of stock liquidity measures on the ATialde and other stock characteristics in the
following baseline ordinary least squares regressiodel:

(5) Adj_liq;; = ATrade;; + Turn;, + Vol;, + InvPrc; + Size;, + &,
whereATrade; , is the negative daily dollar trading volume scabgcthe total number of quote
updates for stockon dayt; andAdj_liq; . denotes various adjusted spread and depth measures
The list of control variables includes stock tragdimrnover Turn), daily stock trading volatility
(Vol), the inverse of stock pricén¢Prc), and firm size $izg. We also include day dummies and
adjust the standard errors for firm-level clustgriand heteroskedasticity in the regression
models*?

Table 2 contains the panel regression results getimating Equation (5) with the full
sample. Overall, we observe a significant positgffect of ATradeon various spread measures

but a weak effect on market depth. In Models (19l é2), the estimation results show the

2 |n regressions in which we use year dummies totethe implementation of the new trading system de not
include the day dummies.
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coefficient onATradeis —2.577 f-statistic = —4.810) when the quoted spread isptioay for
stock liquidity, whereas the coefficient is —2.55@tatistic = —5.655) when the effective spread
is the measure. From an economic perspective, atandard deviation increaseAfradeleads

to a 1.348 basis point decrease in the quoted ¢paed 1.334 basis point decrease in the
effective spread. Because the mean of the quotéctiective spreads falls between 23 and 31
basis points, the impact of AT on stock liquidigyeconomically significant.

Turning to the components of stock liquidity (temgmy inventory cost and adverse
selection cost), the results of Models (5) ands{@gest the reduction in adverse selection costs
is the main source of the positive liquidity effeftAT. In Model (5), the coefficient oATrade
is —0.559 {statistic = —3.157) with realized spread as thasuee of liquidity. In contrast, the
coefficient onATrade is markedly larger at —2.19Q-gtatistic = —5.709) when liquidity is
measured by adverse selection costs in Model (BhoAgh AT reduces both the temporary
inventory and adverse selection costs, the maacetf AT on stock liquidity appears to be an
improvement in the informational efficiency of skotransactions—consistent with the notion
that algorithmic traders leverage their relativeespto gather and process information and thus
improve information efficiency (Jovanovic and Meeky 2012).

In sharp contrast with the results using spreaktbavariables, Models (3) and (4) show
that AT has only weak effects on market depth. \geove an insignificant effect éfTradeon
Depthand a marginally significant effect @epttb. The results suggest that algorithmic traders’
ability to modify or execute their orders instargaunsly reduces the orders available in the
market. Cartea and Penalva (2012) shed theoreigtdal on this trading surplus extraction by

AT.
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Our results also suggest a reliable control vagigelection. When spread-based liquidity
measures are used as dependent variables, a# obtiirol variables are statistically significant,
with the exception of stock turnover across alresgion models; their signs are consistent with
our expectations. Stock turnover relate negatiaaly significantly to quoted spread, in line with
the clientele effect suggested by Amihud and Mesale(1986), though it does not indicate any
significant association with other liquidity meassir We also find that all spread-based
(ihliquidity measures increase with stock volagiland the inverse of stock price but decrease
with firm size. With regard to market depth proxiése inverse of stock pricénf¢Prc) is the
only statistically significant factor, suggestingoatential avenue for further research into the

determinants of market depth.

B. Arrowhead Trading System Reform

While we have established the strong, significatdtionship between AT and stock liquidity,
our results still may be subject to endogeneityblenms. The introduction of the Arrowhead
trading system in January 2010 aims to improvetrding infrastructure and facilitate program
trading, so it provides a perfect exogenous eventolir analysis. When impediments due to
limited access and speed are removed by the inttioduof the new trading system, there should
have been a substantial increase in AT activities.

To depict the direct impact of the upgrade oftifagling system, in Figure 1 we plot the
daily time series of th@&Tradevariable. In response to the system upgrade i®0,2@¢ find a
clear increase in the level of AT after January@®04d/e also examine this impact by regressing
the ATrade variable on theArrowhead dummy variable in Model (1) of Table 3. After

controlling for other stock characteristics, wedfia significant increase in AT due to the
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introduction of the new trading system. The siguifit coefficient of 0.148 for th&rrowhead
dummy variable indicates that the introduction loé ihew trading system leads to a 14.8%
increase in AT for an average stock. Thus, theegystpgrade has achieved its goal to boost AT
on TSE.

A question that naturally follows is whether thecreased AT also improves stock
liquidity and market quality as a whole. To examihis issue, we incorporate into our baseline
regression model thérrowhead year dummy variable and its interaction with tA&rade
variable. As we show in Table 3, we find strongdevice of a positive liquidity effect of the new
trading system. For example, t#eTrade coefficient is —2.428 t{statistic = —4.478), after
controlling for the Arrowhead dummy variable in Model (2), with quoted spread the
dependent variable. Meanwhile, we observe a sifi negative coefficient on tiherowhead
dummy variable, indicating an improvement in stdcjuidity associated with this trading
system reform. Regarding its marginal effect orclstbquidity, we interact theArrowhead
dummy variable with thé\Trade variable. In Model (3), thé\Trade coefficient is —2.742t{
statistic = —4.720) after the inclusion of the ratgion term, ATradexArrowhead The
significant coefficient of —22.714 on the interactiterm confirms that the negative impact of AT
on the quoted bid—ask spread is most pronounced ti¢ implementation of the new trading
system. This conclusion holds even when we sultstihe quoted spread with effective spread
as a measure of stock liquidity in Models (4) abd (

The results in the last four columns of Table ®wshthe Arrowhead effect on the
components of stock transaction costs. The findiags consistent with the notion that
algorithmic traders pocket the returns earned fpsaviding liquidity in the short term and they

improve market liquidity by dampening the inforneatiasymmetry faced by liquidity traders. In
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Model (11), we find that thougATradealone reduces the realized spread by a small edono
magnitude ATrade coefficient = —0.562), the coefficient fohTradexArrowhead(5.912)
suggests AT widens the realized spread after tls¢esy introduction. The adoption of the
Arrowhead trading platform thus gives algorithmiaders the market power to profit from the
provision of liquidity. Clearly the cost of the Amhead trading platform is offset by its
informational benefits. In Models (12) and (13), mae that AT eliminates information barriers
in the trading process, after the implementationthed new trading system. With adverse
selection costs as the dependent variable, thdiadeat for ATrade is —2.362, and that for
ATradexArrowheadis —22.491 in Model (13). Collectively, these Hesusuggest that AT
mitigates the information asymmetry problem; thie@fgrows stronger in 2010, when the new
trading system increases the likelihood of more Adwever, we do not observe any significant
changes in market depth. At best, we find a malgirsggnificant coefficient of —3905.604 on
ATradexArrowheador Depth5in Model (9)

In summary, AT improves the liquidity of stockstéd on TSE, mainly due to AT’s role
in improving information efficiency. In terms of mk&t depth, we observe only a marginally

significant effect of AT on aggregated market degitfive price levels.

C. Additional Tests

Although the preceding analysis allays our endoggrencerns, we remain cautious about
other factors that may confound the relationshipvben stock liquidity and AT. We therefore
conduct additional tests to address the endogemetiplem, driven by potentially missing

control variables, as well as the simultaneous glain stock liquidity associated with the

Arrowhead event.
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In Panel A of Table 4, we control for the laggeependent variable to exclude the
possibility that we might not have considered timeariant characteristics in stock liquidity.
This research design is similar in spirit to a @Gencausality test. In the expanded model, we
find a strong autocorrelation in the spread andidepriables, with coefficients on the lagged
value between 0.625 and 0.991. The coefficientsA®rade and ATradexArrowheadremain
negative and significant for quoted and effectipeead. The main difference in the results is
with the coefficients on thATradevariables for the market depth measures. In pdatic the
coefficients onATrade and ATradexArrowheadare highly significant and negative in Models
(7) and (8) whemepthbis used as the liquidity proxy.

Another concern is that stock liquidity and AT mdpe jointly determined by
unobservable stock characteristics. To mitigatsghmncerns, we control for firm fixed effects
in the baseline regression model (see Panel B bleT4). The model with firm fixed effects
yields qualitatively the same results: AT narrowmtgd and effective spread while it lessens
aggregated market depth at five price levels subm#qthe introduction of the Arrowhead
trading platform.

In Panel C of Table 4, we examine the possibilitgt tick size changes may have
confounded our findings. The introduction of thevnieading system coincides with the TSE
amending the tick sizes for a small group of sto@dthough the tick size reduction does not
apply to all traded stocks, such changes inevitalduld challenge our findings. To ensure the
robustness of our results, we replicate our analiggi a sample of stocks that did not undergo
tick size reduction. The results in Panel C affiour previous conclusion: AT reduces
transactions costs, measured by a variety of sligckdity measures. Particularly, when we

focus solely on stocks that experienced no tick seduction, the relationship of AT with both
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the best available market depth and aggregated emnalbpth at five price levels become

significantly negative, highlighting impedimentsrt@arket depth due to the presence of AT.

V. Algorithmic Trading and Commonality in Stock Liq uidity

Commonality in liquidity is another important dingon of stock liquidity. When individual
stock liquidity moves together with market-wide didity and cannot be diversified away,
systematic liquidity risk results. This systemdiguidity risk is of particular concern during
market downturns, when the commonality in liquidinds to intensify. We therefore analyze
whether AT plays a role in determining commonaiityiquidity in Table 5. To start, we obtain a
proxy for commonality in liquidity by estimating eéhfollowing regression model on a monthly
basis for each stock:

(6) ALiq; ¢ = a;¢ + Bi (AMLiq, + & ¢
where ALigq;, is the change in individual stock liquidity fooski on dayt, and AMLiq . is the
change in market liquidity, which is the simple eage of the individual stock liquidity measure
on dayt. The R-squared estimates from Equation (6) reptede co-movement of individual
stock liquidity with market-wide liquidity. To enseia reliable R-squared estimate, we exclude
the monthly estimates from our subsequent analifsihere are less than 15 stock-day
observations in a particular month. In additione do the bounded nature of R-square estimates,
we logistically transform the measure by dividingguared by (1 — R-squared). We then use the
following equation to investigate the effect of Al commonality in liquidity:

(7) CLiq;; = ATrade; + Size;y + Adj_liq;; + &;+
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whereCLiq represents the monthly estimates of commonalitipum stock liquidity measures:
guoted spreadQSpread, effective spreadHSpread, market depth at best bid and ask prices
(Depth, and aggregated market depth at five price lefixpth].

Table 5 summarizes the results. Irrespective ef liuidity measures, we observe a
consistently negative effect dfTrade on commonality in stock liquidity. In particulathe
coefficient onATrade ranges from —0.212 to —0.080 across the four nsodeith all of the
coefficients significant at the 1% level. The réswduggest that AT lessens individual stock
liquidity co-movement with market liquidity, whicimight occur if algorithmic traders are
experts in acquiring and trading firm-specific inmfation. As such, AT improves the
incorporation of firm-specific information into stk prices, which means that individual stock
liquidity is influenced more by firm-specific inforation than by market-wide information. This
conjecture is plausible as we previously obsermegative relationship between AT and adverse
selection costs. Such a finding is also in linehviite notion that algorithmic traders may engage
in information-based trading, thus leading to tifeimation efficiency in the marketplace.

To ensure that the observed relation between camality in stock liquidity and AT is
robust, we again rely on the implementation of e trading system as an exogenous event.
Operationally, we include the interaction term besgw theArrowheaddummy variable and the
ATrade variable, as well as th&rrowheaddummy variable, in Equation (7). The estimation
results in Panel B are consistent with the conclugirawn from Panel A. We continue to
observe negative coefficients of th&Trade and Arrowhead variables and also find a
significantly negative coefficient for théTradexArrowheadinteraction term. Therefore,
commonality in liquidity appears lower with the ilementation of the new trading system,

especially for stocks associated with greater AT.
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VI. Algorithmic Trading and Stock Liquidity in Extr eme Market Conditions

Noting the generally positive effect of AT on stdajuidity during normal market conditions,
we investigate further whether such effects pernsisextreme market conditions. By many
accounts, practitioners have unfavorable views of the financial press often suggests that
algorithmic traders take the same side on trarmagtin times of high market volatility and
therefore exacerbate market quatity.

We conduct two additional analyses to understarditfuidity effects of AT in extreme
market conditions. We first examine the change@Dfactivities in extreme market conditions
in Table 6, and then examine variations in theitiiqy and liquidity commonality effects of AT
in Tables 7 and 8. We use Hameed et al.’s (201rier to identify extreme market conditions:
A trading day is in an extreme market if the pregioveek market return, proxied by the TOPIX
market index, is more than 1.5 times the standardation above or below its unconditional
mean The unconditional mean and standard deviation adllmarket returns for a particular day
are determined with a rolling window approach, vheégomputes the basic statistics using 52
weekly historical market returns, prior to the pautar trading dayBy using a rolling window
approach, we avoid an uneven distribution of exérdnigh and low market returns in certain
calendar years, such as 2008.

The number of trading days with extreme marketldmns in each year and over the full
sample period is reported in Panel A of Table 6. ¥éamote the days with highly positive
(negative) market returns &ip (Down) market states. The highest number of extreme ebark

increases and declines occurs in 2008, with 22 d&yxtremely high market returns and 32

13 For example, “Algorithmic trades heighten vol4ili Financial TimesDecember 4, 2008 (Gangahar 2008).
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days of extremely low market returns. This volasiteck market is clearly affected by the far-
reaching 2008 global financial crisis. The yearwilie fewest days with highly positive market
returns is 2010; the year with the fewest days weittremely low market returns is 2009,
consistent with expectations associated with awgioharket recovery after the 2008 financial
crisis. The average market returns for the and Down market states are 0.068 and —0.070,
respectively, which indicate the magnitude of thigeane market conditions.

In Panel B, we explore whether AT activities changith market conditions by
regressingATradeon the absolute value of market returns, the actéon terms between local
market returns and extreme market condition dumanables Up andDown). With the signs
of the other control variables remain unchangedhftbe previous regression results, we note
that the coefficient onV|Ret is 0.416 {-statistic = 8.715). This suggests that on averégde,
increases with market movement. Analyzing the ex¢renarket conditions, however, offers a
different message: The coefficients dRetxUp and MRetxDown are —0.304 and 0.338,
respectively. Considered together with the coedfition MRet| these results suggest that
algorithmic traders refrain from trading when theck market shows large prior gains or losses.

We also ask how algorithmic traders affect indinb stock liquidity and liquidity
commonality during extreme market conditions. Inbléa7, we regress the stock liquidity
measures oATradeand its interactions witlp andDown market state dummies. Although we
consistently observe negative and significant ¢aiefits on theATradevariable, the coefficients
on the interaction term&JpxATradeandDownxATrade reveal a different story. For example,
with quoted spread and effective spread as liquglibxies, we observe positive and statistically
significant coefficients orlUpxATrade and DownxATrade Moreover, the magnitude of the

coefficients orDownxATradeis greater than that dopxATrade Take Model (1) for example:
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Compared with ar\Trade coefficient of —3.720 in normal times, the coefitt onATradeis
—2.694 in thdJp market state but only —0.541 in tbewn market state. With regard to market
depth measures, we observe no differential effecATradein the Up market state but find
positive coefficients foDownxATrade Together, these results suggest that AT contitoes
narrow the spreads but reduce market depths irreetmarket conditions, though to a much
lesser extent.

We examine the effect of AT on liquidity commonmalior extreme market states in
Table 8. Because our liquidity commonality measuaes computed monthly, we adjust the
definitions of theUp andDown state dummies as followslp (Down) equals one if the monthly
market return, proxied by the TOPIX index retus1i5 standard deviations above (below) the
unconditional mean of the 12 monthly market retumthe past year, and zero otherwise. Using
liquidity measured by quoted and effective spreasnote positive coefficients fidpxATrade
such that the effect &Tradeon liquidity commonality is weaker in thép market state. But the
negative coefficient otpxATradefor the market depth commonality, as shown in Md@g|
suggests that the association betw@dmade and market depth is stronger in tbe market
state.

Of particular interest are the coefficients DownxATrade across all the liquidity
commonality proxies. Prior studies have shown loglidity commonality tends to rise during
down markets. However, our results do not indicatg strong changes in the association
between AT and various liquidity in down market tata Rather, the coefficient on
DownxATradeis significant only when the quoted spread seagethe liquidity proxy in Model
(2). In Model (1), the coefficient obownxATradeis 0.060 {-statistic = 1.967), which means

that AT reduces the commonality in the quoted spiteaa lesser extent during down market
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conditions. For the rest of the estimation modet®e of theDownxATradecoefficients are

statistically significant.

VII. Conclusion

In response to increasing attention devoted to tAiE, study has attempted to clarify the impact
of AT on stock liquidity in a limit-order driven mget. In particular, we investigate how AT
affects spread-based and market depth—based lgaicd commonality in liquidity during both
normal and extreme market conditions.

Our research yields several interesting empirfoadlings. First, we show that the
presence of AT significantly narrows the quoted efidctive spread but decreases market depth.
When decomposing the effective spread, we showtlieaimain source of the spread-narrowing
effect of AT stems from the reduction in the adeesslection cost. These findings are stronger
after the introduction of the Arrowhead tradingteys. In addition, we find that AT reduces
commonality in liquidity, regardless of how we measstock liquidity. It is important to note
that the liquidity improving effect of AT weakenslibwing both bullish and bearish markets.
Regarding liquidity commonality, we do not obseisy robust changes in the associations
between AT and liquidity commonality following downarkets, except for the commonality in
guoted spreads. Moreover, the negative associdiween AT and liquidity commonality,
measured by either quoted or effective spread, areafollowing bullish markets.

Our research carries significant implications bmth researchers and policymakers, in
relation to the surge of computer-driven tradingjvétees in recent decades. In particular, we
show that AT beneficially reduces spread-basedséetions costs and mitigates individual stock

liquidity co-movement with market-wide liquidity abrmal times. However, regulators should
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be aware of the distinctive impact of AT in extremarket conditions. In particular, any effect
of AT on market quality gets lessened during madestlines, if not reversed. Therefore, it is
necessary to contemplate regulations and measoresersee AT during times of financial

stress.
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Appendix: Variable Definitions

Variable

Acronym

Description

AT Proxy
Algorithmic trading proxy

ATrade

Dollar amount of trading volume (millions of Japaag/en) divided by the total number of
quote updates in a continuous auction on a givatirtg day, multiplied by —1.

Daily Liquidity Measures*
Quoted spread

Effective spread

Realized spread

Adverse selection cost

Market depth at best quoted prices

Aggregated market depth at five levels of quoted
prices

QSpread

ESpread

RSpread

ASel

Depth

Depth5

Quote time duration weighted average of the diffeesbetween bid and ask prices divided
by the midpoint of bid and ask prices on a giveaditng day multiplied by 10,000. This
measure is adjusted for seasonality based on Baut).

Trading volume weighted average of the differenevieen trading price and the midpoint
of bid and ask prices (trading price minus the raidpfor buyer-initiated trades, or
midpoint minus trading price for seller-initiata@des), scaled by the midpoint on a given
trading day, multiplied by 10,000. This measuradgisted for seasonality based on
Equation (1).

Trading volume weighted average of the differenevieen trading price and the midpoint
of bid and ask prices five minutes later (tradimigg minus the midpoint five minutes later
for buyer-initiated trades, or midpoint five minsitiater minus trading price for seller-
initiated trades), scaled by the midpoint on a girading day, multiplied by 10,000. This
measure is adjusted for seasonality based on Boqudt).

Trading volume weighted average of the differenevieen the midpoint of bid and ask
prices five minutes after a particular trade arertidpoint of prevailing bid and ask
prices of the trade (prevailing midpoint price ngrtbhe midpoint five minutes later for
buyer-initiated trades, or midpoint five minutetetaminus prevailing midpoint for seller-
initiated trades), scaled by the midpoint on a gitrading day, multiplied by 10,000. This
measure is adjusted for seasonality based on Baut).

Quote time duration weighted average of dollar amadi order flows at the best bid and
ask prices on a given trading day (millions of Jegs® yen). This measure is adjusted for
seasonality based on Equation (1).

Quote time duration weighted average of dollar amadi order flows at the best bid and
ask prices on a given trading day (millions of Jegs® yen). This measure is adjusted for
seasonality based on Equation (1).

*All liquidity measures are adjusted for weekly aménthly seasonality and the change of minimum sicle, by regressing the measures on the day df,wee

month, and price zone dummies.
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Liquidity Commonality Measures
Commonality in quoted spread CQSpread

Commonality in effective spread CESpread

Commonality in market depth at best quoted price€Depth

Commonality in aggregated market depth at five CDepth5
levels of quoted prices

Logistically transformed? divided by (1 -R?), whereR? is estimated monthly for each

stock from the regression of the daily change qbistdd quoted spread on the daily
change of the cross-sectional average of the adjugtioted spreads of all stocks in the
market.

Logistically transformed?? divided by (1 -R?), whereR? is estimated monthly for each

stock from the regression of the daily change ¢géisidd effective spread on the daily
change of the cross-sectional average of the ajusffective spreads of all stocks in
the market.

Logistically transformed?? divided by (1 -R?), whereR? is estimated monthly for each

stock from the regression of the daily change qgtistdd market depth on the daily
change of the cross-sectional average of the adjusiarket depth of all stocks in the
market.

Logistically transformed? divided by (1 -R?), whereR is estimated monthly for each

stock from the regression of the daily change glistdd aggregated market depth at
five levels of quoted prices on the daily changethaf cross-sectional average of the
corresponding market depth measure of all stocksearmarket.

Control Variables

Stock trading turnover Turn
Stock return volatility Vol
Inverse of stock price InvPrc
Market capitalization Size
Market return MRet

Daily number of shares traded, scaled by the numbshares outstanding.

Difference between the highest and lowest stoateprn a given trading day.

The inverse of the daily closing stock price.

Log of the market capitalization.

Daily market return, computed from the end-of-dajue of TOPIX stock market index.
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TABLE 1 Summary Statistics
This table reports the mean, median, and standavittbn (SD) of the algorithmic trading variabl&Tradg, six different stock
liquidity measures, and the stock-level controliatales by year and for the full sample. The sixydsiock liquidity measures are the
guoted spreadQSpread, effective spreadESpread, realized spreadRSpreafl adverse selection co#A$e), market depth at best
bid and ask priceDepth, and market depth at five levels of stock prifl@epth5). The spread measures are multiplied by AD4
liquidity measures are adjusted for monthly and klyeseasonality, as well as price zone variatidrigee control variables are daily
measures of stock trading turnov@ugn), stock return volatility Yol), the inverse of stock pricén¢Prc), and the log of market
capitalization $izg. NStocksrefers to the number of stocks in each year ardfuh sample. All the variables are defined in the
Appendix. We winsorize all variables at the top &ottom 0.05% distribution of the pooled sample.

Year NStocks ATrade QSpread ESpread RSpread ASel Depth Depth5 urn T Vol InvPrc Size
2007 1735 Mean -0.369 22.715 18.175 1521 16.755 47.224 201.917 0.049  466.479  0.002 18.145
Median  -0.132  16.740 13.413  0.177 13.032 5.185 25.781 0.002 21.000 0.001 17.929

SD 0.741 21.324 16.677 14.001 15.340 545.513 1846.979 0.310 2814.852 0.003 1.533

2008 1710 Mean -0.250 34.896 26.478 1.616 24.994 31.524 145.250 0.063  488.486  0.003 17.744
Median  -0.079 23.243 17.664 -0.461 18.095 3.326 16.969 0.002 23.000 0.001 17.538

SD 0.578 36.459 26.626 22.215 24.585 504.571 1731.699 0.401 2911.342 0.004 1.588

2009 1693 Mean -0.175 32.329 26.138  3.049 23.192 34.125 154.049 0.052  237.399 0.003 17.560
Median  -0.066 21.558 17.274  0.491 16.575 3.551 18.221 0.002 15.000 0.002 17.384

SD 0.378 32.617 26.395 21.734 23570 505.491 1737.573 0.343 1508.520 0.005 1.555

2010 1678 Mean -0.076 26.594 22.751  3.772 19.007 39.883 176.765 0.053 177.657  0.003 17.606
Median  -0.044 17.740 15.094 0.811 13.588 4.067 20.744 0.002 12.000 0.002 17.422

SD 0.098 27.437 23.923 19.201 19.970 548.891 1802.568 0.356 1127.249  0.005 1.558

2007-2010 1837 Mean -0.219 29.101 23.351  2.477 20.966 38.241 169.683 0.055  344.345 0.003 17.767
Median  -0.073  19.493 15.729  0.272 15.160 4,011 20.345 0.002 17.000 0.001 17.570

SD 0.523 30.348 23.945 19.554 21.402 526.664 1780.895 0.354 2247.003 0.004 1.576
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TABLE 2 Impacts of Algorithmic Trading on Stock Liq uidity

This table presents the results from the panekssipns of individual stock liquidity measures tock-
level algorithmic trading and control variables fdlummies are untabulated). The baseline regression
model is

Adj_liq;y = ATrade;; + Turn;; + Vol + InvPrc;, + Size; + &;¢
In this model,Adj_lig is measured by quoted spred@Spreadl, effective spreadESpread, realized
spread RSpreall adverse selection cosA%e), market depth at best bid and ask prideepth), and
market depth at five levels of stock pric&epth3. All liquidity measures are adjusted for monthalyd
weekly seasonality, as well as price zone variatidiTraderefers to the algorithmic trading measure.
The daily control variables includes stock tradimghover Turn), stock return volatilityYol), the inverse
of stock price IfvPrc), and log of market capitalizatiorsigg. All the variables are defined in the
Appendix. Thet-statistics in parentheses are based on the sthrataors, adjusted for firm-level
clustering and robust to heteroskedasticity. ***, &nd * indicate statistical significance at th#,15%,
and 10% levels, respectivel.denotes the number of stock-day observations. &hmpke period is from
January 2007 to December 2010.

QSpread ESpread Depth Depth5 RSpread ASel
1) (2) (3) 4) () (6)
ATrade -2.577%** -2.550%** -278.122 -1,100.492* -0.559%** -2.190%**
(-4.810) (-5.655) (-1.511) (-1.784) (-3.157) (-970
Turn -2.080** -0.030 -29.157 -103.117 -0.242 0.222
(-2.411) (-0.042) (-1.406) (-1.423) (-0.743) (@32
Vol 0.746%* 0.633*** 7.278 25.643 0.200%*** 0.419%**
(6.279) (6.145) (1.314) (1.324) (4.623) (5.535)
InvPrc 3,225.064**  3,614.338**  2,424.159*** 10,586.798*** 1,925.923*** 1 572.377***
(24.632) (31.477) (4.326) (5.015) (18.554) (12)886
Size -6.834%* -4 AT7Lxx 1.891 21.520 -0.655*** -4.,022%*
(-23.632) (-22.683) (0.161) (0.544) (-4.966) ()
Constant 141.264*** 92.425%** -63.591 -484.871 8.824***  87.617***
(26.139) (25.254) (-0.353) (-0.795) (3.505) (23)8
N 1,564,962 1,564,986 1,564,988 1,564,988 1,564,864 1,564,862
R? 0.447 0.608 0.077 0.110 0.189 0.268
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TABLE 3 Impacts of the Arrowhead Reform on Algorithmic Trading and Stock Liquidity

This table presents the panel regression resultsecflgorithmic trading or stock liquidity variaisl for the Arrowhead trading reform, together
with other control variables. The baseline regassiodels are

(1) ATrade;y = Arrowhead;; + Turn;, + Vol;; + InvPrc; + Size; + &+

2 Adj_liq;y = ATrade;; + Arrowhead;; + ATrade;; X Arrowhead;; + Turn;, + Vol;, + InvPrc;, + Size; + &+
Here, Arrowheadis a dummy variable that takes a value of 1 if plaeticular trading day is on or after January 2 O otherwiseAd;_lig
represents quoted spredSpread, effective spreadgSpread, realized spreadSpreadl adverse selection co#t$e), market depth at best bid
and ask pricesOepth, or market depth at five levels of stock pricEethy. The estimation of Equation (1) is shown in cofuifl); the
estimations of Equation (2) are reported in colurf®)s(13). All liquidity measures are adjusted foonthly and weekly seasonality, as well as
price zone variationATraderefers to the algorithmic trading measure. Thdydaentrol variables include stock trading turno¥&urn), stock
return volatility {/ol), the inverse of stock pricén{/Prc), and the log of market capitalizatidBizg. All the variables are defined in the Appendix.
Thet-statistics in parentheses are based on the sthedars, adjusted for firm-level clustering antbust to heteroskedasticity. ***, **, and *

indicate statistical significance at the 1%, 5% 46% levels, respectivelil denotes the number of stock-day observations. @almpke period is
from January 2007 to December 2010.

AT Proxy Liquidity Measures
ATrade QSpread ESpread Depth Depth5 RSpread Sel A
(1) (2 (3 4 (5) (6) (7 (8 9) (10) (11) (12) (13)
ATrade -2.428%* -2.742%%* -2.503%** -2.714 -274.708 -287.896 -1,086.087*  -1,140.035* -0.644*  -0.562*** -2.051%** -2.362%**
(-4.478) (-4.720) (-5.602) (-5.724) (-1.515) 512) (-1.787) (-1.786) (-3.730) (-3.069) (-5.404) -5.818)
Arrowhead 0.148** -6.000%** -7.711% -3.168*** -4.320%** 54.797 -17.132 219.143* -75.081 0.693*** 1.138*** Rl -5.586***
(17.383) (-21.819) (-22.688) (-17.509) (-19.820) 1.6(5) (-0.918) (1.920) (-1.182) (5.598) (6.960) 24(456) (-31.303)
ATradex -22.714%* -15.288*** -954.795 -3,905.604* G2 -22.491%**
Arrowhead (-8.044) (-7.284) (-1.408) (-1.705) (4.136) (-11.105)
Turn 0.086** -2.139** -2.206*** -0.055 -0.100 -28.584 -31.404 -100.566 -112.099 -0.250 -0.233 0.207 0.141
(1.971) (-2.507) (-2.587) (-0.077) (-0.140) (asy (-1.427) (-1.417) (-1.460) (-0.773) (-0.720) .3(0) (0.212)
Vol -0.038*** 0.811*** 0.814%*** 0.662*** 0.664*** 7.140 7.242 25.088 25.506 0.179*** 0.178%* 0.470%** A7 2%+
(-2.747) (6.790) (6.775) (6.441) (6.423) (1.298) (1.297) (1.306) (1.308) (4.168) (4.164) (6.295) 268)
InvPrc -11.561%** 3,274%* 3,255%x* 3,635%** 3,622%** 2,804 1,978%* 12,174%* 8,797** 1,902%* 1,907 * 1,619% 1,599%**
(-7.086) (25.773) (25.253) (31.935) (31.678) 68)8 (4.219) (4.587) (5.015) (18.230) (18.254) (728 (12.842)
Size -0.191%* -6.935%** -7.245%*% -4.520%** -4.729%** 1.635 -11.391 20.423 -32.862 -0.608*** -0.527*** 4.120%* -4.427%*
(-17.426) (-23.856) (-22.957) (-22.769) (-21.966) (0.137) (-0.553) (0.505) (-0.475) (-4.559) (-3.563 (-22.404) (-22.328)
Constant 3.175%* 144.414%* 149.906*** 94.028** 97.723** -72.814 158.000 -520.489 423.662 7.868%* 6.438**  90.206*** 95.644%**
(16.646) (26.566) (25.569) (25.516) (24.605) 431Q) (0.482) (-0.869) (0.385) (3.095) (2.358) (7B (25.651)
N 1,564,988 1,564,962 1,564,962 1,564,986 1,564,986 1,564,988 1,564,988 1,564,988 1,564,988 1,%84,8 1,564,864 1,564,862 1,564,862
R? 0.367 0.426 0.427 0.597 0.598 0.077 0.084 0.109 190.1 0.181 0.181 0.241 0.243
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TABLE 4 Robustness Tests on the Impact of Algorithrt Trading on Stock Liquidity
This table reports the results from a series ofistiess tests on the impact of algorithmic tradimg
stock liquidity. The baseline regression model is

Adj_lig, = ATrade, + Arrowhead + ATragdex Arrowhead TurhVol, +InvPrg
+Sizg, + ¢,

Adj_lig represents quoted spre&@Spread, effective spreadSpreadl, market depth at best bid and ask
prices Pepth, or market depth at five levels of stock pricBggthg. All liquidity measures are adjusted
for monthly and weekly seasonality, as well aseone variationsATrade refers to the algorithmic
trading measurédrrowheadis a dummy variable that takes a value of 1 iffihgicular trading day is on
or after 4 January 2010 and 0 otherwise. The figiady control variables includes stock tradingniover
(Turn), stock return volatility Yol), the inverse of stock pricén¢Prc), and log of market capitalization
(Sizg. All the variables are defined in the AppendianBl A expands the baseline regression model by
including the lagged dependent varialgle,, and Panel B reports regression results, inclufiingfixed-
effects. Panel C reports results based on a sulbsarhistocks that were not subject to the tick size
reduction after the adoption of the Arrowhead mgdsystem. The-statistics in parentheses are based on
the standard errors adjusted for firm-level cluatgrand robust to heteroskedasticity. ***, ** arid
indicate statistical significance at the 1%, 5% 0% levels, respectivel|N denotes the number of
stock-day observations. The sample period is franudry 2007 to December 2010.
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Panel A: Lagged Dependent Variables

QSpread ESpread Depth Depth5
€] 2 (3 4 ©) (6) @) (8)
Vet 0.747%** 0.744%+* 0.625%** 0.621*** 0.986%** 0.986*** 0.9971%** 0.991%**
(108.231 (105.166 (47.436 (46.408 (99.522 (99.281 (168.331 (166.090
ATrade -0.655%** -0.494%** -1.027%* -0.931%** -6.596%** -7.139%** -20.471%* -22.515%*
(-4.727) (-3.226) (-5.927) (-5.060) (-7.123) (-7.460) (-8.170) (-8.567)
Arrowhead -1.851%** -1.582%** -0.488 -2.744%%
(-18.741) (-16.547) (-0.986) (-3.285)
ATradex -4.401%** -5.345%+* -21.877%* -84.323***
Arrowhead (-6.051) (-6.724) (-3.352) (-6.331)
Turn -0.767*** -0.758*** -0.113 -0.106 1.579** 1.487* 5.129%** 4.784%x*
(-3.359) (-3.312) (-0.413) (-0.386) (2.126) (2.006) (2.791) (2.583)
Vol 0.256%** 0.255%** 0.2871*** 0.280%*** -0.509** -0.501** -1.680%** -1.651%**
(6.726) (6.888) (6.328) (6.437) (-2.390) (-2.334) (-3.219) (-3.097)
InvPrc 835.477** 853.180*** 1,371.345%*  1,387.909*** 15.960 -9.606 4.624 -87.448
(21.317) (21.370) (19.600) (19.514) (0.673) (-0.423) (0.072) (-1.461)
Size -1.668*** -1.724% -1.627%** -1.695%** -0.416** -0.740%** -1.721%%* -2.947%x*
(-20.125) (-19.165) (-18.329) (-17.700) (-2.534) (-4.495) (-3.569) (-6.542)
Constan 34.437%= 35.904*** 33.604** 35.158%** 6.529** 11.959%** 27.826%* 48.586%**
(21.570) (20.784) (19.672) (19.161) (2.310) (4.198) (3.357) (6.290)
N 1,540,09. 1,540,09. 1,540,13 1,540,13 1,540,141 1,540,14 1,540,141 1,540,141
R? 0.756 0.757 0.771 0.772 0.975 0.975 0.986 0.986
Panel B: Firm Fixed Effects
QSpread ESpread Depth Depth5
(1) 2 (3) 4) (5 (6) (7 (8)
ATrade -0.637*** 0.022 -0.992%* -0.709%** -26.842 -37.998** -109.510* -165.473***
(-3.913) (0.109) (-6.394) (-4.659) (-1.431) (-2.248) (-1.681) (-2.802)
Arrowheac -7.441%* -4.057*+* 0.17¢ -11.87:
(-24.218) (-23.090) (0.025) (-0.488)
ATradex -14.174%* -8.775%** -151.235 -798.283**
Arrowheac (-10.296 (-9.893 (-1.536 (-2.282
Turn -3.397%** -3.395%* -2.308*** -2.314%* -9.741 -10.708 -43.482 -48.426
(-5.602) (-5.681) (-4.666) (-4.722) (-0.715) (-0.790) (-0.980) (-1.091)
Vol 0.638*** 0.619*** 0.561*** 0.552%+* 1.32¢ 1.44¢ 7.57: 8.16(
(8.163) (8.953) (7.774) (8.245) (0.259) (0.282) (0.475) (0.508)
InvPrc 3,853.829***  3,883.919*** 3,652.525***  3,668.540*** 1,730.448* 1,670.804* 4,538.161* 4,284.589
(20.273 (20.734 (20.977 (21.156 (1.825 (1.789 (1.654 (1.574
Size -3.814%* -5.754%x* -3.576%** -4.637%** 8.947 8.539 26.036 20.619
(-6.698) (-9.778) (-7.172) (-9.124) (1.053) (0.948) (0.982) (0.736)
Constant 86.479** 122.576** 76.924%* 96.623*** -131.117 -128.993 -329.140 -256.360
(8.224) (11.297) (8.321) (10.265) (-0.869) (-0.801) (-0.702) (-0.515)
N 1,564,962 1,564,962 1,564,986 1,564,986 1,564,988 1,564,988 1,564,988 1,564,988
R? 0.193 0.212 0.306 0.316 0.003 0.005 0.006 0.009
Panel C: Subsample oStocks Not Subjected to Tick Size Reductions
QSpreac ESpreat Deptt Deptht
©)] 2 3 (4 5 (6) ™ (8)
ATrade -2.965%+* -1.855** -3.864%** -3.449%* -94.209**  -103.634** -432.160%** -AT77.274%%
(-4.392) (-2.332) (-7.511) (-6.662) (-1.994) (-2.162) (-2.910) (-3.168)
Arrowhead -7.570%* -4.228%** -5.700 -40.662*
(-19.172) (-17.112) (-0.910) (-1.733)
ATradex -20.979%* -18.455%** -353.007*** -1,791.291***
Arrowhead (-6.848) (-9.265) (-3.973) (-5.360)
Turn -4.799%** -4.608*** -2.123%* -2.040%** -31.611%* -32.634*** -114.913*** -119.694%**
(-7.136) (-7.518) (-5.427) (-5.539) (-2.755) (-2.824) (-2.643) (-2.729)
Vol 1.112% 1.098*** 0.951*+* 0.944x* 8.502** 8.551*** 31.036*** 31.254%**
(8.624) (8.807) (9.120) (9.277) (3.170) (3.221) (3.098) (3.171)
InvPrc 3,251.311** 3,276.012*** 3,730.285** 3,737.761** 2,245.078** 1,947.220*** 10,102.518*** 8,659.914**
(25.105) (25.359) (33.702) (33.289) (5.092) (4.942) (6.229) (5.874)
Size -8.220%** -8.359%+* -5.678*** -5.848%** 8.830*** 4.091 40.241%** 16.427*
(-24.278) (-23.249) (-24.824) (-24.361) (2.740) (1.557) (3.927) (2.907)
Constan 165.046***  169.048*** 111.983**  115.706*** -160.668*** -83.169** -728.853*** -336.574*
(26.220) (25.399) (26.368) (26.021) (-3.034) (-1.971) (-4.305) (-2.408)
N 1,083,38! 1,083,38I 1,083,38: 1,083,38: 1,083,38: 1,083,38: 1,083,38: 1,083,38!
R2 0.449 0.456 0.650 0.653 0.053 0.060 0.145 0.169
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TABLE 5 Impacts of Algorithmic Trading on Commonality in Stock Liquidity

This table reports the results from the panel gioms of monthly estimates of commonality in stock

liquidity on the algorithmic trading variable anther control variables. The baseline regressionahisd
ClLig, = ATrade, + Size+ Ad] lig+g,

where CLig represents the monthly estimates of commonalitfour stock liquidity measures: quoted
spread QSpread, effective spreadHSpreadl, market depth at best bid and ask prideepth, and
market depth at five levels of stock pric&epth3. All liquidity measures are adjusted for monthalyd
weekly seasonality, as well as price zone varigtioVe estimate the baseline regression equation in
Panel A and augment this baseline equation by divedu the Arrowhead dummy variable and the
interaction betweemTrade and Arrowhead in Panel B.ATrade is the monthly average of daily
algorithmic trading variableSizeis the monthly average of daily log of market calpration, andAdj_lig
is the monthly average of the four daily stock ity measures. All commonality measures are scaled
downward by 1,000 in the coefficients. Thetatistics in parentheses are based on the sthredaors
adjusted for firm-level clustering and robust tadneskedasticity. ***, ** and * indicate statisat
significance at the 1%, 5%, and 10% levels, respEgt N denotes the number of stock-month
observations. The sample period is from January 20@ecember 2010.
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Panel A: Main Effects

CQSpread CESpread CDepth CDepth5
1) (2) (3) (4)
ATrade -0.086*** -0.080*** -0.163*** -0.212%**
(-3.981) (-3.864) (-6.759) (-8.925)
Size 0.117** 0.080*** 0.099*** 0.097***
(10.887) (7.964) (11.065) (10.600)
QSpread 1.214**
(2.483)
ESpread 4.089***
(5.602)
Depth 0.059*
(1.819)
Depth5 0.013
(1.298)
Constant -5.024 % -4.738*** -5.353*** -5.139%**
(-25.836) (-25.759) (-34.281) (-32.242)
N 78,674 78,662 78,630 78,631
RZ 0.046 0.039 0.020 0.029
Panel B: Arrowhead Effects
CQSpread CESpread CDepth CDepth5
1) (2) 3) 4)
ATrade -0.124%** -0.118*** -0.165*** -0.235***
(-5.111) (-5.236) (-7.116) (-9.794)
Arrowhead -0.098*** -0.221%** -0.163*** -0.065**
(-3.924) (-8.670) (-6.966) (-2.568)
ATradex -0.616*** -0.561*** -0.727%** -1.695***
Arrowhead (-2.879) (-2.917) (-4.302) (-7.645)
Size 0.107*** 0.069*** 0.084*** 0.069***
(9.475) (6.446) (9.126) (7.284)
QSpread 0.995*
(2.071)
ESpread 4.034***
(5.562)
Depth 0.053*
(1.806)
Depth5 0.008
(1.057)
Constant -4.832*** -4.506*** -5.060*** -4.663***
(-23.702) (-23.033) (-31.557) (-28.264)
N 78,674 78,662 78,630 78,631
R2 0.010 0.006 0.010 0.011
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TABLE 6 Algorithmic Trading Activities during Extre me Market Conditions
Panel A of this table reports the distribution gfremely positive and negative weekly market resuug
year and for the full sample, where a weekly markétrn is an extremely positive (negative) market
return if the previous weekly market return is thg standard deviation above (below) the unconutio
mean of 52 weekly market return in the past 25@ingadays NDaysdenotes the number of trading days
in the given sample periodlp (Down) reports the number of extreme positive (negativeg¢kly market
returns; Meandp) (Mean Pown)) reports the mean value of thip (Down) dummy variable. Panel B
presents the panel regression of the algorithnaidiig on extreme market conditions as well as other
control variables. The baseline regression model is

ATrade, =| MRef_,|+ Up,+ Down+ MRet,x Up+ MRetx Dow.
+Arrowhead + Turp + Vol + InvPrc+ Sizet g,

whereATradeis the algorithmic trading variable, amRetis the previous week market index return. The
list of daily control variables includes stock firzgl turnover Turn), stock return volatility Yol), the
inverse of stock pricdrfvPrc), and the log of market capitalizatioBiZg. All the variables are defined in
the Appendix. The-statistics in parentheses are based on the sthmdeors adjusted for firm-level
clustering and robust to heteroskedasticity. ***, &nd * indicate statistical significance at th#,15%,
and 10% levels, respectivel.denotes the number of stock-day observations. @hmpke period is from
January 2007 to December 2010.
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TABLE 6 — continued

Panel A: Extreme Market Conditions

Year

NDays Up MeanUp) Down MeanDown)
2007 245 14 28 -0.0548
2008 245 22 32 -0.0902
2009 243 14 1 -0.1039
2010 245 8 14 -0.0530
2007-2010 978 58 0.0684 75 -0.0702

Panel B: AT during Extreme Market Conditions

(2) (2)
IMRet| 0.416*** 0.577***
(8.715) (10.947)
Up -0.016*** -0.003
(-7.653) (-1.384)
Down -0.042*** -0.026***
(-9.501) (-6.686)
MRetxUp -0.304***
(-9.377)
MRetxDown 0.338***
(9.267)
Arrowhead 0.150%*** 0.150***
(17.694) (17.706)
Turn 0.086** 0.086**
(1.965) (1.965)
Vol -0.038*** -0.038***
(-2.743) (-2.742)
InvPrc -11.626%** -11.622%*=*
(-7.097) (-7.096)
Size -0.191*** -0.191***
(-17.390) (-17.390)
Constant 3.162%** 3.158***
(16.531) (16.521)
N 1,563,333 1,563,333
RZ 0.367 0.367
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TABLE 7 Impact of Algorithmic Trading on Stock Liqu idity during Extreme Market Conditions
This table reports the panel regression of stagkidity on algorithmic trading variable during extne
market conditions. The baseline regression model is

Adj_lig, = ATrade, + Up, + Down,+ Up,x ATrade+ Downx ATrade Tul
+Vol, +InvPrg, + Size +&,

In this model,Adj_lig alternatively represents quoted spre@fiiread, effective spreadHSpreadl,
market depth at best bid and ask pridespth), and market depth at five levels of stock prifl@epth5.

All liquidity measures are adjusted for monthly amelekly seasonality, as well as price zone varigtio
ATrade refers to the algorithmic trading measudp (Down) is a dummy variable equal to 1 if the
previous weekly market return is 1.5 standard dewia above (below) the unconditional mean of 52
weekly market return in the past 250 trading dayg] O otherwise. Thestatistics in parentheses are
based on the standard errors adjusted for firm-lelustering and robust to heteroskedasticity. ***,
and * indicate statistical significance at the 8%, and 10% levels, respectiveN.denotes the number
of stock-day observations. The sample period imflanuary 2007 to December 2010.

QSpread Espread Depth Depth5
1) ) 3 4)
ATrade -3.720%** -3.210%** -276.580 -1,092.218*
(-6.925) (-7.147) (-1.546) (-1.823)
Up 1.606*** 0.526*** -3.686 -14.913
(13.022) (6.726) (-0.487) (-0.584)
Down 5.871%** 3.069%** -2.157 -10.379
(29.728) (26.640) (-0.541) (-0.723)
UpxATrade 1.026*** 0.474%+* 20.196 77.035
(6.520) (3.785) (0.731) (0.821)
DownxATrade 3.179%* 1.896*** 72.549** 284.204***
(12.010) (11.953) (2.310) (2.854)
Turn -2.239%* -0.111 -28.429 -99.768
(-2.613) (-0.156) (-1.437) (-1.444)
Vol 0.823*** 0.669*** 7.210 25.316
(6.664) (6.361) (1.341) (1.350)
InvPrc 3,239.992%** 3,617.372%* 3,110.569*** 13,403.516*
(25.098) (31.828) (3.525) (4.234)
Size -7.053%** -4.584*x 2.350 23.371
(-24.136) (-23.097) (0.204) (0.603)
Constant 144.373** 94.057** -71.065 -514.812
(26.495) (25.552) (-0.402) (-0.861)
N 1,563,307 1,563,331 1,563,333 1,563,333
R? 0.421 0.595 0.076 0.107
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TABLE 8 Impacts of Algorithmic Trading on Commonality in Stock Liquidity During Extreme
Market Conditions
This table reports the panel regression of stoglidity commonality on algorithmic trading variable
during extreme market conditions. The baselineesgjon model is:

Cliq,, = ATradg, + Up,+ Down,+ Up,x ATragde+ Dowpx ATrade Tul
+Vol  + InvPrg, + Sizg + &,

Here, CLiq alternatively represents the monthly estimatesashmonality in the following four stock
liquidity measures: quoted spred@Spread, effective spreadeSpread, market depth at best bid and ask
prices Depth, and market depth at five levels of stock pri¢Bepthy. All liquidity measures are
adjusted for monthly and weekly seasonality, asl w&el price zone variation®\Trade refers to the
algorithmic trading measuré&lp (Down) is a dummy variable equal to 1 if the monthly kedrreturn is
1.5 standard deviations above (below) the uncansitimean of 12 monthly market returns in the past
one year, and 0 otherwise. The list of control alaleés includes monthly average stock trading tuenov
(Turn), stock return volatility Yol), the inverse of stock pricelngPrc), and the log of market
capitalization $iz@. Thet-statistics in parentheses are based on the sthadars adjusted for firm-level
clustering and robust to heteroskedasticity. ***, &nd * indicate statistical significance at th#,15%,
and 10% levels, respectivelM.denotes the number of stock-day observations. @lmpke period is from
January 2007 to December 2010.

CQSpread CESpread CDepth CDepth5
(1) (2) (3) (4)
ATrade -0.164*** -0.17 1% -0.186*** -0.208***
(-5.680) (-6.078) (-6.284) (-8.021)
Up -0.084 -0.041 -0.087 -0.133*
(-1.506) (-0.659) (-1.388) (-2.267)
Down 0.226*** 0.201*** 0.120*** 0.078***
(9.203) (8.166) (4.860) (3.176)
UpxATrade 0.123* 0.418*** -0.209** -0.117
(1.709) (3.676) (-2.322) (-1.410)
DownxATrade 0.060** -0.032 0.042 -0.011
(1.967) (-1.075) (1.134) (-0.322)
Size 0.112%* 0.075*** 0.095*** 0.093***
(10.195) (7.242) (10.522) (10.170)
QSpread 0.893*
(1.854)
ESpread 4.034***
(5.536)
Depth 0.051*
(1.687)
Depth5 0.017
(1.584)
Constant -4.967*** -4.690*** -5.282%** -5.067***
(-25.086) (-24.670) (-33.858) (-31.942)
N 77,011 76,998 76,966 76,967
R? 0.011 0.006 0.009 0.010
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FIGURE 1
Time Series of Number of Messages, Trading Volumand Algorithmic Trading Measures
This figure depicts the time series of the dailyss-sectional average of the number of traffic mgss,
stock trading volume, and algorithmic trading measATrade from January 2007 to December 2010,
where the number of traffic messages is the nummbguote price updates at five levels of quotedqgs]
trading volume is the dollar amount of shares tladad the algorithmic trading measutd (add is the
trading volume divided by the number of traffic mages multiplied by —1.
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