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1. Introduction

The short-term momentum in monthly stock returns of Jegadeesh and Titman (1993)

is a pervasive challenge to existing asset pricing models. The literature generally agrees

that the unconditional capital asset pricing model (CAPM) of Sharpe (1964) and Lintner

(1965) cannot explain the momentum effect. Jagannathan and Wang (1996) argue that the

unconditional CAPM is not originally developed to describe a realistic multi-period economy,

and therefore does not exhibit meaningful relationships between market betas and expected

returns. They show that the conditional CAPM is powerful in explaining the cross-section of

average returns. By allowing betas to be time-varying, Ferson and Harvey (1999) reject the

conditional Fama and French’s (1993) (FF3F) model in various asset pricing tests. Recently,

Boguth, Carlson, Fisher, and Simutin (2011) find that when the CAPM is conditioned based

on lagged realized betas of individual winner and loser stocks (components), the average

momentum alpha declines by 20% to 40% relative to the unconditional measure.

This study is motivated to examine why the information of individual winner/loser stocks’

lagged betas can enhance the explanatory power of the conditional CAPM in Boguth et al.

(2011). We also study why the conditional FF3F model does not perform well on momentum

effects. This issue is related to the curious finding about the incorrect prediction of FF3F

model. Fama and French (1996) document that the unconditional loadings on their SMB

and HML factors are higher on loser portfolios than winner counterparts, and hence falsely

“predict” negative momentum returns (the reversal effect). There is little research on this

special failure of the FF3F model in explaining momentum profits, even though this model

can rationalize many other anomalies.1

In this study, we argue that the momentum effect is an artifact of the way stocks are

selected in the portfolio such that their time-varying dynamics are concealed at the aggregate

1Fama and French (1996, p. 68) find that loser portfolios have higher loadings on SMB and HML factors
than winner portfolios. Consequently, they conclude that “the three-factor model predicts reversal for the
post-formation returns of short-term losers and winners, and so misses the observed continuation.”

1



portfolio level. Our thinking is akin to Lo and MacKinlay (1990a) and Lewellen et al. (2010),

who express skepticism about particular methods of sorting stocks that can significantly

affect the final results.

We find that winner stocks on average load more on market risks during up markets

whereas loser stocks have higher loadings in down markets. The time-series trends in market

loadings of winner and loser stocks also move in opposite directions to each other over time.

Interestingly, the aggregate portfolio return, however, does not exhibit these time-varying dy-

namics. Since Cooper et al. (2004) show that momentum returns are lower following market

losses, we should expect to see the market beta of winner-minus-loser (WML) portfolios to

be lower when the economy moves from the peak to the trough.2 We do not find this behav-

ior in the beta of aggregate portfolio returns. When the economy heads toward recessions,

the WML beta computed using aggregate portfolio returns increases by 0.07, suggesting a

rise, not a fall, in momentum returns. In stark contrast, the average WML beta computed

using returns on individual stocks (components) shows the correct direction with a decrease

in beta by 0.30 when the economy enters recessions. These findings indicate that Boguth et

al.’s (2011) average component betas can improve the explanatory power of the conditional

CAPM because they capture the large time variation of winner and loser stocks over time.3

Similar to the time-varying dynamics of the market beta, the SMB and HML factors of

Fama and French (1993) also correctly rationalize returns on individual winner and loser

stocks during good economic times. Winner stocks have higher exposure to the SMB and

HML risk factors than do loser stocks. Therefore, winners should earn higher future average

returns while losers should earn lower average returns, causing positive expected momentum

profits during bull markets. The converse is true when risk loadings are estimated using

2Grundy and Martin (2001) and Daniel and Moskowitz (2011) also document the lower momentum
profitability in bear markets.

3Because the NBER business cycles are dated ex−post, there is a concern about the “look-ahead” bias if
one is to use the dates. It should be noted that this study does not use NBER business cycles dates to form
trading portfolios, nor does it rely on those dates in estimating conditional asset pricing models. Rather, we
simply use those business cycle dates to demonstrate the time variation of momentum stocks’ betas.
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aggregate portfolio returns, consistent with the findings of Fama and French (1996). These

observations suggest that the puzzle of Fama and French (1996) can be solved by looking at

individual stock components. Consequently, we employ the conditional asset pricing model

to risk adjust returns on individual stocks of the portfolio (this method is briefly called

component-level risk adjustment).

Applying to CRSP monthly data, we find that when the conditional asset pricing model

is used to risk adjust returns on individual winner and loser stocks, the reduction in average

momentum alphas ranges from 14% (for the CAPM) to 50% (for the FF3F model) compared

to the respective portfolio-level estimate. For the typical 6/1/6 momentum portfolio in which

stocks are ranked by their continuously compounded returns over the past 6 months and

then winner-loser portfolios are held over the next 6 months with one-month skipping period

in between, the conditional FF3F model performs better than the conditional CAPM by

reducing the average alpha by 30bps per month.4 The average component-level alpha from

the conditional FF3F model is reduced to 0.61% per month, representing a 50% decrease from

the portfolio-level estimate. These findings confirm our conjecture that the component-level

risk adjustment is able to capture the large time variation in betas (as we show in Section

4, this method accounts for the fact that the time variation in components’ betas is much

bigger than that of their portfolio counterparts). Consequently, asset pricing models have

higher explanatory power when these facts are accounted for.

There are several reasons for the success of component-level risk adjustments. Boguth

et al. (2011) argue that using the lagged component beta as a conditioning variable has

the advantage of accounting for changing weights of individual stocks at the end of the

ranking period; betas computed using aggregate portfolio returns, by contrast, miss out this

information. Similarly, we argue that the success of the component-level risk adjustment

comes from its ability to capture the change in weights of individual stock components. More

4This finding is interesting because, at the portfolio level, the CAPM performs better than the FF3F
model in terms of reduction in alpha.
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importantly, it accounts for the fact that the portfolio’s composition changes frequently due

to rebalancing and delisted stocks. Grundy and Martin (2001) document that 39.9% of

winners and 36.2% of losers are dropped out of the portfolio at the end of the investment

period. Eisdorfer (2008) notes that on average 10% of stocks in the winner and loser portfolios

are delisted during the investment period, causing the portfolio’s composition at both end

points of the holding period to be different. Finally, the component-level risk adjustment

has an advantage that tests on portfolio returns do not have, even if we use the component

beta as an instrument; it can avoid the arbitrary method of stock selections of momentum

strategies as argued in Lo and MacKinlay (1990a) and Lewellen et al. (2010).5

To demonstrate the mechanical way of sorting stocks into momentum portfolios that

biases the unconditional alpha upwards, we conduct a small Monte Carlo simulation in

which returns on 4000 stocks are generated by the CAPM (i.e., their returns are completely

explained by the CAPM.) We follow the usual approach to form momentum portfolios whose

average returns are risk-adjusted using the time-series market model regression. We find

that the alpha is higher than the average raw momentum return and the null hypothesis of

zero (portfolio) alpha is rejected 88% of the time at the five percent level. Though expected,

these results are still striking because the CAPM holds exactly for every single stock, but the

mechanical way of sorting stocks causes momentum alphas to be non-zero. The component-

level risk adjustment is thus a natural way to “undo” the impact of portfolio construction

on asset pricing tests while still maintaining the interpretation of risk-adjusted momentum

returns.6

Our study is related to Chordia and Shivakumar (2002) who employ a macroeconomic

5Chordia, Goyal, and Shanken (2011) and Ang, Liu, and Schwarz (2010) also argue that applying asset
pricing models on individual constituents of the portfolio can mitigate the critique of Lo and MacKinlay
(1990a) about the arbitrary method of sorting stocks. In a study outside the momentum literature, Griffin
et al. (2010) (page 3243), who test the efficiency of international exchanges, argue that “an advantage of
using individual stocks is that one can allow correlations [between stocks] to switch sign”.

6We repeat our simulations in which stocks’ returns are now generated by the three risk factors of Fama
and French (1993) downloaded from Ken French’s website. We also simulate returns using the conditional
version of these asset pricing models. Our conclusions do not change.
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model to adjust returns on individual stock components of momentum portfolios. A more

recently related paper is of Wang and Wu (2011) who use the unconditional FF3F model

to risk adjust individual stock returns. In this study, we point out the ‘sample selection

bias’7 in the existing methodology of component-level risk adjustments, which typically uses

returns on individual stocks including the entire ranking period to run regressions.

We argue that using ranking period returns will bias the estimated beta because, by

construction, the momentum strategy selects stocks with the most positive past returns for

winner portfolios and those with the most negative past returns for loser portfolios. When

the ranking period was a bull market, the WML beta would be positive, while the beta

would be negative when the ranking period was a bear market.8 Consequently, if betas

are estimated using ranking period returns, the bias will be positive during bull markets

while during bear markets, the bias will be negative. This bias serves to artificially amplify

the dynamics of estimated betas, thereby causing all asset pricing models that account for

time-varying risk to completely explain momentum returns.

We correct for this bias by simply excluding ranking period returns from the estimation

and find that the magnitude of the bias is much bigger in down markets. For example,

using CRSP data, we find that the bias causes the market beta of momentum portfolios to

be 22% higher during economic expansions (as dated by the NBER), but 37% lower during

contractions. Moreover, our Monte Carlo simulations also show that betas estimated using

pre-ranking period returns are almost equal to the true beta that we use to simulate stock

returns. By correcting for the bias, we find that the negative adjusted momentum returns

documented in Chordia and Shivakumar (2002) are reversed. With the bias in place, we

confirm their original results that their macroeconomic model yields the average adjusted

7This bias is not the survivorship or look-ahead bias. We acknowledge that the phrase “sample selection
bias” is loose and subject to debate, but we use it as a convenient way to indicate the bias that is incurred
by using ranking period returns, which are determined by the construction of momentum strategies, as the
left-hand side of the regression. We explain this bias in detail in Section 4.

8The positive covariance between momentum returns and the market is also documented in Grundy and
Martin (2001), Chordia and Shivakumar (2002), Daniel and Moskowitz (2011), and Boguth et al. (2011).
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momentum return of -2.97% per month. After the bias correction, this average return reverses

to positive 5.03% per month.9

2. Related Literature

Although the literature on time-varying risk premium has been well developed, applying

the conditional models at individual stock levels is not frequently employed. In the mo-

mentum literature, Chordia and Shivakumar (2002) were among the first to use a set of

macroeconomic variables to adjust returns on individual winner and loser stocks. In other

words, their method is similar to ours, except that they do not have risk factors in the model.

Chordia and Shivakumar (2002) find that momentum is strongly related to business cycles as

dated by the NBER and consequently suggest that momentum can potentially be explained

by time-varying expected returns. However, to be explained by rational theories, momentum

payoffs must covary with risk factors. As also acknowledged by Chordia and Shivakumar

(2002), the lack of common risk factors in their model constrains their claims to only the

correlation between the predictive power of those variables and momentum payoffs.

Our study builds on their method to incorporate common risk factors. We also use

a set of conditional asset pricing models that allow us to tackle the time-varying betas

of individual stocks. The conclusions of this study are therefore more general, and the

final momentum payoff can be interpreted as time-varying risk adjusted returns. More

importantly, we find the problem of sample selection bias in the current component-level

adjustment, which occurs because of the time-varying dynamics of winner and loser stocks

over the ranking period. This run-up makes component-level regressions spurious when the

9Chordia and Shivakumar (2002) essentially employ two methods; the first is similar to ours and the
second is a two-way dependent portfolio sort between raw and predicted returns. Using the second method,
Griffin et al. (2003) show that the findings of Chordia and Shivakumar (2002) do not hold in 16 international
markets. Similarly, Cooper et al. (2004) find that Chordia and Shivakumar’s (2002) results from the two-way
portfolio sorts are driven by the market microstructure bias of penny stocks. Our replications reported in
this study suggest that the first method is still robust to the exclusion of penny stocks. Our contribution
is to point out that, after excluding penny stocks, the component-level risk adjustment also needs to be
corrected for ‘sample selection bias’.
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estimation window contains ranking period returns. After we correct for this problem, the

average adjusted return from Chordia and Shivakumar’s (2002) models reverses from -2.97%

per month (t-statistic=-1.52) to 5.03% per month (t-statistic=2.34).

Boguth et al. (2011) compute a series of average lagged betas of individual stocks in the

momentum portfolios and use them as another set of conditioning information to estimate

conditional models at portfolio levels. They show that their conditional models help reduce

momentum alphas by 20% to 40% compared to the unconditional versions. However, they

do not investigate why the average betas of winner and loser stocks can be good conditioning

variables.10 We provide explanations for those curious results. In addition, Boguth et al.

(2011) estimate the conditional CAPM and FF3F models at the portfolio levels, which is

different from our method. There are several advantages in our simple risk adjustment

at stock levels. Firstly, as we discuss in later sections, running conditional models at the

individual stock level exploits (1) time-varying betas and the contrasting behavior of winner

and loser stocks, and (2) the changing composition and weights of individual stocks over the

investment period. These characteristics are not seen by looking at the aggregate portfolio

return because the portfolio is rebalanced frequently. Secondly, since we apply the conditional

model on returns of individual winner and loser stocks, we do not need to include the monthly

beta series as another set of conditioning information, leading to the benefit of parsimony.

The final difference is in terms of results. We find that applying the conditional FF3F on

stock components’ returns can result in stronger reduction in alpha. These findings shed

light to explaining Fama and French (1996)’s puzzle of incorrect loadings on SMB and HML

factors, which exist at portfolio levels.

Our study can also be seen as a robust extension of Wang and Wu (2011) who employ

the unconditional FF3F to adjust for the risk of individual winner and loser stocks. They

find that average momentum alphas are reduced by approximately 40%. Although they run

10Boguth et al. (2011) show that conditional alphas are lower than unconditional because unconditional
alphas are biased due to volatility timing. They then suggest that lagged component betas, as conditioning
information, can mitigate the problem.
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rolling regressions at individual stock levels, Wang and Wu (2011) do not estimate the FF3F

model under conditioning information and hence do not account for the time variation in

the parameters. Ignoring conditioning information may also lead to problematic inferences

as pointed out by Boguth et al. (2011). Boguth et al. (2011) show that running rolling

regressions without conditioning variables will incur “overconditioning” bias to the average

momentum alpha. This overconditioning bias incurs because the nonlinearity in payoffs of

winners and losers. In fact, we show that even at the firm level, individual winner and loser

stocks are exposed to the market risk differently in different economic states, causing the

payoffs to be nonlinear. Consistent with Boguth et al. (2011), we find that conditioning betas

on a set of state variables can significantly improve the explanatory power of asset pricing

models. Wang and Wu (2011) also do not discuss how errors in variables may affect their

results. Similar to the problem of Chordia and Shivakumar (2002), accounting for the sample

selection bias increases the risk-adjusted return in Wang and Wu (2011) by approximately

20%.

3. Data and Empirical Methodology

This study employs monthly returns from every stock in the Center for Research in

Security Prices (CRSP) database from January 1963 to December 2009. Consistent with the

literature, we examine stocks with share codes of 10 or 11 and thus exclude closed-end funds,

Real Estate Investment Trusts (REITs), trusts, American Depository Receipts (ADRs), and

foreign stocks from the sample. Computed returns also take into account distribution events

such as stock splits or right issues. To ensure that we do not incur any look-ahead bias, we

do not apply any filters to this raw data set until the construction of momentum portfolios.

As we are interested in testing conditional asset pricing models, we employ instrumen-

tal variables. Ghysels (1998) shows that selecting instruments is not a trivial task and

researchers typically have to make a choice. Our motivation for selecting instruments is to

maintain the parsimony of our models, and thus we limit the set to only the most common
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conditioning variables that are also examined in Fama and French (1989). We include a

constant; the dividend yield ratio (DY) computed as the cumulative 12-month dividends di-

vided by the current price index level; the term spread (TERM) calculated as the difference

in yields between ten-year and three-month yield spread in the Treasury market; and the

default spread (DEF) which is the difference in yields between Baa- and Aaa-rated bonds.11

Data on these state variables, which are obtained from Amit Goyal’s website12, are also

comprehensively examined in Goyal and Welch (2008). Finally, we obtain the Fama and

French (1993) three factors, namely excess market returns (RM), SMB, and HML, from Ken

French’s website.13

< INSERT TABLE 1 AROUND HERE >

Table 1 reports summary statistics for three instrumental variables. The mean value of

DEF is the lowest and it also has the lowest standard deviation. The three variables are also

not highly correlated, with the highest correlation of 0.46 between DY and DEF. These low

correlations mean that we do not employ duplicating state variables.

3.1. Constructing Momentum Portfolios

We follow Jegadeesh and Titman (1993) to construct momentum portfolios. In order to

aid comparisons with other conditional models in the momentum literature (for example,

Lewellen and Nagel (2006) and Boguth et al. (2011)), we consider 6/1/6 strategies where

stocks are ranked over the past 6 months. Specifically, at the end of each month, continuously

compounded returns on each stock are computed as a criterion to rank stocks over the

past 6 months (formation period). To be eligible for ranking, stocks must have a return

history of 6 months and be actively traded from the beginning to the end of the formation

11Including another conditioning variable of three-month T-Bill does not change our conclusions. In our
replication of Chordia and Shivakumar (2002), we also include T-Bill to make the results comparable with
theirs.

12Amit Goyal’s research data, http://www.hec.unil.ch/agoyal/, accessed 08/06/2011. We thank Amit
Goyal for publicizing the data.

13We also thank Kenneth French for making the data available on
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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period. This restriction is necessary because stocks with invalid returns at both endpoints

of ranking period cannot be computed. Moreover, if the stocks are not traded at the end of

the formation period, they cannot be purchased or sold, and thus cannot be included in the

relative-strength portfolio.

Following Jegadeesh and Titman (2002), stocks must also be priced above $5 at the end

of each ranking period t − 1 in order to be included in either winner or loser portfolios.14

Stocks with market capitalizations in the bottom decile (using NYSE breakpoints) at time

t − 1 are also excluded from the examination. Because we are interested in testing asset

pricing models on individual stock returns, we ensure meaningful regression estimates by

requiring that stocks must also have 24 valid returns over the past 60 months to be ranked

at time t−1. These requirements do not induce look-ahead bias as all historical information

is known prior to the holding period. If a stock is delisted from the exchange, we will use

CRSP’s corresponding delisting return in the last month of returns in the holding period.15

Stocks are then grouped into deciles where the top decile consists of best performers

(winners) and the bottom decile contains worst performers during the ranking period (losers).

In the next 6 months (referred to as holding or investment period), the momentum strategy

enters a long position in an equally-weighted portfolio of winners and a short position in

an equally-weighted loser portfolio. In order to avoid bid-ask bounce and price pressure, we

follow the literature to introduce one-month skipping period between formation and holding

periods (Jegadeesh (1990), Lo and MacKinlay (1990b), Boudoukh et al. (1994) and Grinblatt

and Moskowitz (2004)).16 The strategies are followed each month, and thus overlapping

calendar-time portfolios are constructed.

14In order to unify the time reference, we denote t as the skipping month (the month before the holding
period). Thus, the formation period is from t− 6 to t− 1 and the holding period is from t+ 1 to t+ 6.

15This practice follows the existing literature (e.g. Eisdorfer (2008)). Beaver et al. (2007) document
that the majority of delisting distribution payments are made in the month of the delisting. Therefore,
they suggest that assuming delisting returns are realized immediately after the delisting month is usually
reasonable.

16Lo and MacKinlay (1990b) show that bid-ask bounces may cause short-term reversals in which losers
may become winners and vice versa.
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4. Portfolio- versus Component-Level Risk Adjustment

In this section, we first compliment the literature that portfolio-level risk adjustments

using the conditional CAPM and FF3F models cannot explain the momentum effect. We

then proceed to applying those models on returns of individual winner and loser stocks

(components) that comprise momentum portfolios.

4.1. Portfolio-Level Risk Adjustment

Panel A of Table 2 reports raw returns on the 6/1/6 momentum strategy. The strategy

yields the average return of 1.01% per month with an associated t-statistic of 4.87, which is

statistically significant at the 1% level. This magnitude of return is comparable to that of

the existing studies (e.g. Jegadeesh and Titman (2001)). Panel B shows the alpha from the

following unconditional time-series regression:

rWML,t = αWML + β>WMLf j,t + ε (1)

where rWML,t is the return on winner-minus-loser portfolio, f jt represents common risk

factors namely the excess market return (rm) or the Fama and French (1993) three factors

(FF3F). αWML is reported as the unconditional risk-adjusted return at portfolio levels.

Panel B of Table 2 confirms previous research that unconditional asset pricing models

cannot explain the momentum effect. The unconditional CAPM alpha is 1.04% per month,

which is slightly higher than the average raw return in panel A. Of note is the failure of the

FF3F model, whose WML alpha is much higher than that of the CAPM. Consistent with

Fama and French (1996), the intercept on the loser portfolio is strongly negative (-0.74%),

thereby inflating the average WML alpha to 1.23% per month (t-statistic = 5.90), which

is higher than both the CAPM alpha and the average raw momentum return of 1.01% per

month.

11



Panel C reports the alpha from conditional multi-factor models:

rWML,t = αWML +
K∑
j=1

(β>WML,jZt−1)f jt + εt (2)

where rWML,t is the return on the winner-minus-loser portfolio and f jt represents common

risk factors. Zt−1 is the row vector of lagged instrumental variables including a constant.

αWML and βWML are the constant loadings to be estimated. Zt−1βWML,t−1 are the ad-

ditional conditional risk loadings on the factor. The main advantage of this econometric

specification, which is also used in Ferson and Schadt (1996) and Boguth et al. (2011), is the

ease of interpretation.17 Specification (2) says that the conditional model is expressed as an

unconditional multi-factor model consisting of common risk factors and their corresponding

interactions with state variables. If the model is correctly specified, αWML is expected to be

equal to zero.

Panel C shows that conditional models offer no improvements in pricing errors. The

conditional CAPM alpha is 1.04% per month with the associated t-statistic of 4.67, which

is equal to that of the unconditional model. Similarly, the conditional FF3F alpha is 1.19%

per month (t-statistic = 5.55) – only 4 bps lower than the unconditional estimate.

In unreported tables, we compute Gibbons-Ross-Shanken (GRS) F -tests of intercepts

on 10 momentum portfolios, which show that conditional models perform slightly better in

explaining momentum profits than their unconditional counterparts. The GRS test shows

that the conditional FF3F model produces the lowest F -statistic of 5.23, compared with 5.81

for the conditional CAPM. Nevertheless, consistent with the literature (Grundy and Martin,

2001), conditional models that are applied at the portfolio level still do not fully rationalize

the momentum effect. We therefore turn to the component-level risk adjustment of Chordia

and Shivakumar (2002) in which the focus is now on the individual constituent of winner

17Shanken (1990) and Ferson and Harvey (1999) also allow the alpha to be time-varying with the condi-
tioning information.
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and loser portfolios.

< INSERT TABLE 2 AROUND HERE >

4.2. Component-Level Versus Portfolio-Level Betas

In this subsection, we examine the difference in dynamics of betas between individual

stocks and aggregate portfolio returns. We point out that the time variation of average betas

of individual winner and loser stocks is much higher than that of aggregate portfolios. These

time-varying dynamics cannot be seen at the portfolio level because momentum portfolios

re-balance frequently, causing their compositions and individual stocks’ market capitaliza-

tions to change on a monthly basis. Without loss of generality, the following market model

regression is run for each stock i belonging to winner or loser portfolios using 120 months of

its returns prior to the ranking period.18

ri,t = α + βirm,t + εi (3)

where ri,t is the excess return on stock i; rm,t is the excess returns on the market. Beta

loadings for individual stocks are preserved in each month and the monthly value-weighted

average of betas across the winner and loser stocks are computed, taking into account the

market capitalization of each stock at the end of ranking periods. For easy comparison across

betas at different levels, we use value weights by market capitalization of stocks at the end

of ranking period when reporting average betas and their graphs. In order to avoid losing

too much data, we use 60-month window in the first 120 months of a stock’s life, and then

employ the full 120-month window afterward. Nevertheless, earlier versions of the paper also

18Consistent with the vast majority of the momentum literature, we estimate betas using monthly returns.
Although it is increasingly popular to use daily data to estimate betas, Gilbert et al. (2014) show that,
contrary to the conventional belief, betas estimated at daily frequency are not better or more precise. In
fact, Gilbert et al. (2014) find that, in the presence of the opacity of small firms and risk-averse investors,
betas estimated at daily frequency are poor measures of systematic risk and tests using daily returns can be
confounded by the effect of opacity. Monthly returns, however, do not suffer from this problem.
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report results for fixed 60-month windows, and the conclusion does not qualitatively change.

As argued by Boguth et al. (2011), the advantage of computing betas in this way is that we

do not leave out the information in the weight (i.e. market capitalization) of the individual

components. We plot the time series of component-level betas in the first graph of Figure 1.

Since we wish to capture more economic contractions and expansions, the sample period in

this analysis is extended between January 1936 and December 2009.

We also plot average WML betas on ‘hypothetical’ portfolios, which are equivalent to

the average component beta. At the end of each ranking period t − 1, we compute value-

weighted average returns on the WML portfolio over the past 120 months prior to the

six-month ranking period (from t − 126 to t − 7). We then regress these 120 months of

WML portfolio returns on the excess market return and obtain the beta. We repeat this

‘portfolio-level regression’ as we form a new portfolio in the following month. Because the

portfolio beta should be equal to the value-weighted average of individual stocks’ betas, the

betas of these hypothetical portfolios should be similar to those computed at the individual

component levels in the first graph. In fact, the correlation coefficient between the average

firm-level betas and hypothetical portfolios’ betas is 0.98 (not tabulated).

Hypothetical portfolio betas are plotted in the second graph of Figure 1. We call these

portfolio betas hypothetical because they are different from those computed using returns on

actual Jegadeesh and Titman’s (1993) momentum portfolios, which do not take into account

changes in stock compositions and weights at the end of each ranking period. The purpose

of constructing these hypothetical portfolios is to show that firm-level risk adjustment is

similar to portfolio-level risk adjustment as long as changes in the portfolio composition are

properly accounted for.

In order to compare component-level betas with the contemporaneous portfolio betas, we

also plot their portfolio betas of the actual value-weighted WML portfolio in the third graph

(to make betas comparable across graphs, the momentum portfolio in the third graph is value-

weighted.). These market betas are computed by running 120-month rolling regressions of
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average monthly WML returns on the market risk (again, we use only 60 months of returns

in the first 120 months). Lewellen and Nagel (2006) argue that this method can capture the

effect of time-varying betas as long as betas are fixed within the window.

The first two graphs of Figure 1 show that the average component-level WML beta varies

dramatically over time. They are even more volatile during crisis periods such as the early

2000s market crash and the recent Global Financial Crisis between 2007 and early 2009.

These time-varying dynamics of WML portfolio beta computed using returns on individual

stocks indicate that if we treat the aggregate momentum portfolio as a test asset and run

model (3) as one-shot regression to obtain a single estimate, we will miss out the important

time variation in the beta of individual momentum stocks at the end of the ranking period.

This problem still exists even when we estimate betas using rolling-window regressions on

the monthly portfolio return.19

The first three rows of Panel B of Table 1 report the average market beta of individual

winner and loser stocks (components) computed at the end of each ranking period. Winner

stocks load more on the market than losers during economic expansions (1.23 versus 1.12),

suggesting that WML portfolios should earn higher expected return in the holding period.

Loser stocks on the other hand have the average market loading of 1.26 during contractions,

which is higher than 0.96 of winner stocks, indicating that the WML portfolio should earn

lower average return in the holding period. The last two columns of Table 1 show the

movements of betas from the peak to the trough of the economy and vice versa. Consistently,

winner betas on average decrease by 0.26 when the market moves from the peak to the trough

while they increase by 0.13 during recovery periods. The movement of loser betas is just the

opposite. When the economy falls into recessions, the average beta of loser stocks increases by

0.05. But their betas decrease by 0.13 when the economy heads toward the next peak. These

contrasting dynamics of winners and losers suggest that (1) the betas of winner and loser

19Boguth et al. (2011) show that the methods to estimate conditional models in these studies give prob-
lematic inferences, as they suffer from “over-conditioning bias” in which the conditioning information was
not observed by investors at time t− 1.
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stocks (components) are time-varying with the market states, and (2) a closer examination of

the risk exposure of individual stocks may give us a better understanding of the underlying

risk of momentum portfolios.

The third graph of Figure 1 shows the contemporaneous market beta on the aggregate

value-weighted momentum portfolio. Compared with the first two graphs, there is much less

time variation at the portfolio level, consistent with Lewellen and Nagel (2006). Moreover,

the time-series trend also moves in the opposite direction to that at component levels, espe-

cially during crisis periods. For instance, the contemporaneous portfolio-level beta trended

downwards during the early 2000s market crash whereas the average component-level beta

trended upward. In fact, the correlation coefficient (not reported) between component-level

betas and portfolio-level betas is -0.14.

Panel B of Table 1 quantifies the trend of portfolio-level betas (three middle rows). In

contrast to average component-level betas, the average portfolio-level winner beta is lower

than that of loser’s during economic expansions (1.30 versus 1.37), suggesting that the mo-

mentum portfolio should earn low (or negative) expected return. We also see similar trends

during economic contractions, which cause the aggregate WML portfolio beta to be similar

in both states of the economy (with -0.08 in expansions and -0.07 in contractions). These

results show that the contemporaneous portfolio-level beta computed using monthly portfo-

lio returns does not vary over time, and therefore the contrasting dynamics in the betas of

winner and loser stocks (components) do not appear in the portfolio-level beta.

Our view is that the movement of market betas computed on aggregate monthly portfolio

returns is counter-intuitive to what we know from the momentum literature. Given that

Cooper et al. (2004) show that momentum returns are lower following market losses, we

should expect to see the beta on WML portfolios to decrease when the economy moves from

the peak to the trough. This is not the case for portfolio-level betas. The last two columns

of Panel B of Table 1 shows that when the economy moves from the peak to the trough,

the portfolio-level WML beta increases by 0.07, indicating a rise, not a fall, in momentum
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returns. On the other hand, the average component-level WML beta shows the correct

direction with a decrease in beta by 0.30 when the market heads toward the trough. This is

another support for the use of component-level risk adjustments.

The variance of component-level betas, hypothetical betas, and portfolio-level betas are

0.159, 0.146, and 0.044, respectively (not tabulated). We test the hypothesis that the vari-

ance of betas is statistically equal to zero using the delta method corrected for autocor-

relations of betas as described in Cochrane (2005). The t-statistics of the variance in the

first, second, and third series of betas are 7.42, 5.85, and 2.88, respectively. The variance

of portfolio-level betas has the lowest t-statistic, indicating that it is not volatile enough to

describe the time-varying dynamics of momentum stocks’ betas. We also compute average

conditional betas from the Ferson and Schadt’s (1996) conditional market model (in which

model (3) has the market return and its interactions with state variables); our conclusions

in this section do not change.

The fact that the time variation of components’ betas cannot be seen on the aggregate

portfolio return indicates that applying conditional asset pricing models on aggregate port-

folio returns will miss out the important dynamics of individual stocks. Even though we use

120 months of returns to estimate betas, the behavior of portfolio-level betas in the third

graph is consistent with the finding of Lewellen and Nagel (2006, p. 291) that portfolio

betas “do vary considerably over time – just not enough to explain large unconditional pric-

ing errors”. However, looking at component-level betas we can see a large variation in the

average WML betas, which suggests that a potential source of alpha can be detected at this

level. Our findings compliment Boguth et al. (2011) who argue that the component beta uses

the important information of the weights of individual stocks at the end of ranking period

whereas portfolio-level betas do not account for changing portfolio weights, though they do

not make the above points about the dynamics of component-level betas. We provide a more

formal theoretical argument for the component-level risk adjustment in Subsection 4.4.

< INSERT FIRGURE 1 AROUND HERE >
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4.3. Component-Level Risk Adjustment and Sample Selection Bias

In this subsection, we employ unconditional and conditional asset pricing models (Mod-

els (1) and (2), respectively) to adjust for the risk of individual stocks (components) in

momentum portfolios. The method is first used by Chordia and Shivakumar (2002) and

later adopted by Wang and Wu (2011). Our methodology differs from theirs in three dis-

tinct ways. First and foremost, for reasons explained below, we use estimation windows prior

to the ranking period. Second, we employ full conditional models in which betas are explic-

itly allowed to be time-varying. Third, in order to maintain some variations in returns on

risk factors and conditioning variables, we employ 120-month windows instead of 60-month

windows to estimating asset pricing models.20

Our component-level risk adjustment proceeds as follows. Momentum portfolios are

formed normally and the constituents (components) of the portfolio are exactly the same

as those in Table 2. But during the six-month holding period from t + 1 to t + 6, returns

on each individual stock i belonging to winner or loser portfolios are risk-adjusted using the

following general model. The process of computing portfolio returns then proceeds normally

just as we form the raw Jegadeesh and Titman (1993) portfolio.

radji,t = ri,t − rf −
K∑
j=1

(β̂
>
ijZt−1)f jt (4)

where β>ij is estimated using the past 120-month returns prior to the ranking period (i.e.,

individual stock returns from t − 120 − 6 to t − 7. The reason for this exclusion of six-

month ranking period returns will be explained shortly). Stocks are required to have at least

24 valid observations in the estimation period. (To ensure results are comparable between

tables, this constraint was also in place when we formed the raw momentum portfolio.) In

order to avoid losing too much data, we use 60-month windows of returns in the first 120

20Again, in the earlier version of our paper, we also use fixed 60-month windows of stock returns and our
conclusions do not qualitatively change. Subsection 4.7 also employs extending-window estimations to which
our conclusions remain robust.
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months and then use the full 120-month window afterwards. Risk factors, f jt, are excess

returns on the market (rm) or the Fama and French three factors (FF3F). State variables,

Zt−1, are dividend yield, term spread, and the default spread. Before we discuss the main

results of this risk adjustment in Table 5, we should first note the differences between our

methodology and that of Chordia and Shivakumar (2002), which is mainly the exclusion of

ranking period returns from the estimation.

Measurement Errors

The estimation of conditional models at individual stock levels may raise concerns about

errors-in-variable (EIV) biases. We note that although the firm-level risk adjustment has

been used in a few momentum studies, EIV is not extensively discussed. First of all, there is

an EIV bias in usual standard errors. Cochrane (2005) shows that the correct standard error

can be calculated in a GMM framework. Assuming that the errors are i.i.d., the variance of

estimated alphas can be computed by the following formula:

var(α̂) =
1

T
(1 + µ>f Ω−1f µf )Σ (5)

where µf is K × 1 mean vector of the risk factors; Ωf is the variance-covariance matrix of

the risk factors and Σ is the residual covariance matrix.21 We find that EIV causes standard

errors to be slightly higher, and hence making the t-statistic slightly smaller. Consistent

with the literature (see Chordia, Goyal, and Shanken (2011) for a discussion), employing

corrected standard errors does not affect any of the conclusions. Nevertheless, all standard

errors of risk-adjusted returns in this paper are calculated using Equation (5).

Using individual stocks as test assets is often thought to incur more estimation errors than

portfolios. However, this argument is not really true as pointed out by Ang, Liu, and Schwarz

(2010), who show that standard errors from component-level cross-sectional regressions are

21If the alpha is estimated using conditional models, f will include the risk factors and their interactions
with the state variables.
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not higher, and sometimes are even lower, than those from portfolios. Recently, Chordia,

Goyal, and Shanken (2011) also endorse the use of cross-sectional regressions on individual

stocks. Both studies focus on the econometrics sides of tests rather than the explanatory

power (on momentum anomaly) of asset pricing models. It should also be noted that we

do not employ cross-sectional but simple time-series regressions. As noted in the discussion

of Chordia et al. (2011), since estimated betas do not serve as explanatory variables in our

tests there is no EIV in the coefficients.

Readers not familiar with how momentum strategies rebalance may raise concerns about

the difference between component-level betas and portfolio-level betas. Theoretically, port-

folio betas should be equal to value-weighted averages of individual stocks’ betas. However,

due to the fact that individual stocks’ weights and composition of momentum portfolios

change frequently, the beta computed on aggregate portfolio returns will be different from

that computed at the end of each ranking period. The portfolio’s composition can change

not only because the momentum strategy is rebalanced monthly (Grundy and Martin (2001)

document that 39.9% of winner portfolio’s composition change each month and this statistic

for loser portfolios is 36.2% due to rebalancing), but also because of stocks being delisted

during the holding period. Eisdorfer (2008) notes that 10% of stocks in the winner and loser

portfolios are delisted between 1975 to 2005, causing the portfolio’s composition at the end

of formation period to be different from that during the investment period. Our hypothetical

portfolios (see the second graph of Figure 1) show that if we could compute portfolio-level

betas at the end of each ranking period (before we form the next overlapping portfolio), there

would be virtually no difference between component-level betas and portfolio-level betas.

Sample Selection Bias

In the momentum context, betas from time-series regressions may be biased, not because

of being estimated at component levels, but due to the inclusion of ranking period returns in

the regression. The momentum strategy mechanically selects stocks with the most positive

returns over the ranking period into winner portfolios and those with the most negative
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returns over the same period into loser portfolios. Consequently, if we include ranking

period returns as the left-hand side of regressions, the variable is no longer randomly selected,

thereby causing the regression assumptions to be violated. Because winner and loser betas

vary through time as shown in Figure 1 and the Panel B of Table 1, the magnitude of this

bias is dependent on the market states. In order to see this, without loss of generality to

multifactor models, we can resort to the fundamental representation of measurement error

in the estimated CAPM β̂it for each component of the WML portfolio as follows:

β̂it|t−1 − βit =

∑t−S−1
s=t−S−T0

(rm,s − r̄mt) · εit∑t−S−1
s=t−S−T0

(rm,s − r̄mt)2
(6)

where T0 is the estimation window (e.g., 120 months); S is the finishing month of the

estimation window (e.g., if S = 0, we include ranking period returns in the estimation

whereas if S = 6, we exclude ranking period returns); r̄mt = T−10

∑t−S−1
s=t−S−T0

rm,s is the

mean of the market return over the estimation period; βit is the true beta; and εit is the

idiosyncratic component of the market model regression. Grundy and Martin (2001) show

that the idiosyncratic return of a stock is the driving force for it to be a winner or loser

stock. Because we are classifying stocks as either “winners” or “losers” on the basis of their

returns over the ranking period, we can appeal to the theory of order statistics22 to assert

22When we have a sample of N observations from some distribution fX(x) and we order the observations
from smallest to largest, X1 = min{X1, X2, . . . , XN} and XN = max{X1, X2, . . . , XN} then the density of
the k-th order statistic is given by:

fX(k)
(x) = i

(
n

k

)
[FX(x)]k−1[1− FX(x)]N−kfX(x)

where, for example, the density of the minimum return X(1) equals

fX(1)
= fX(x) · [1− FX(x)]N−1 · n!

1!(n− 1)!

which is the unconditional density evaluated at x multiplied by the probability that all of the other N − 1
outcomes are greater than that x, and the number of ways this can be achieved, and where FX(x) denotes
the cumulative distribution function of X. As the number of draws increases the density of the first order
statistic shifts to the left, while the density of the highest order statistic shifts to the right. If the mean of
X is zero, as in the case of the regression residual, this means that the lower order statistics (corresponding
to loser stocks) have a negative mean, while the higher order stocks (corresponding to winner stocks) have
positive means.
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that for winner stocks, εW will be positive while for loser stocks, εL will be negative.

As is usual for showing the unbiased estimator of OLS, if we assume that εi,t is inde-

pendent of the regressor rm,t, which is a common assumption when dealing with stochastic

regressors (see Section 8.2, p. 207-208 of Hamilton (1994)), we establish the typical result

that the OLS beta is unbiased (in Equation (6), E(β̂it|t−1) = βit).

However, in the momentum context, the assumption that rm,t is independent of εit is

clearly indefensible when ranking period returns are included in the estimation. To see

this note that because we are selecting extreme winners and losers, εW,t and εL,t will be

positive and negative, respectively. If the ranking period was a bull market (formally, let the

discrete state indicator Ss = 0 correspond to a month that is a bull market) then E((rm.s −

r̄mt)εW,s|Ss = 0) > 0 and E((rm.s− r̄mt)εL,s|Ss = 0) < 0 (for s = t−S+1, . . . , t−1), while for

bear markets (i.e., Ss = 1) E((rm.s− r̄mt)εW,s|Ss = 1) < 0 and E((rm.s− r̄ms)εL,s|St = 0) > 0.

This will bias the results, and we summarize the direction of bias in the table below.23

Direction of sample selction bias

Market Portfolios β Bias

Bull
Winner +
Loser −
WML +

Bear
Winner −
Loser +
WML −

Note: this table summarizes the direction of bias on component betas when they are estimated using

ranking period returns. “+” denotes upward trends while “−” denotes downward trends.

The bias will cause winner betas to be biased upwards while loser betas are biased

downwards during economic expansions, and vice versa for contracting periods in which

winner betas are biased downwards and loser betas are biased upwards. Because the direction

of bias in WML betas is positively related to the market states, any asset pricing model that

23The positive covariance between εi,t for momentum portfolios and the market is also documented in
Grundy and Martin (2001), Chordia and Shivakumar (2002), Cooper et al. (2004), Boguth et al. (2011), and
Daniel and Moskowitz (2011).
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accounts for time-varying risks can completely explain momentum returns (if ranking period

returns are included in the estimation). In order to avoid this problem, we estimate betas in

Equation (4) using 120 months of returns on individual stocks prior to the ranking period

(S = 6). Holding period returns from t+ 1 to t+ 6 will then be risk-adjusted using Equation

(4) (i.e., we skip the six-month ranking period before predicting returns in the holding

period).24

To study the size of the bias and how it can be corrected by excluding ranking period

returns from the estimation, we undertake a small Monte Carlo experiment. We fit a regime

switching model to the market returns in which the conditional distribution of the market

depends on the state variable St, which varies between periods of bull markets when returns

have high mean and low variance, and bear markets when returns have high variance and a

slightly negative mean.25 In this model, the state St = 0 corresponds to the low volatility,

typically bullish state; and the state St = 1 corresponds to the high volatility, typically

bearish state. The state evolves as a Markov Chain with transition probabilities P (St =

0|St−1 = 0) = 0.9784 and P (St = 1|St−1 = 1) = 0.8916 and the market return is given by:26

rm,t ∼

 N(1.0045, 3.6753) if St = 0

N(−2.2022, 10.1701) if St = 1

We then simulate the returns on 4000 stocks assuming that the CAPM prices returns exactly

24We thank Jeffrey Wooldridge for a discussion on this issue. Excluding six-month ranking period returns
from the estimation does not contradict the idea of time-varying betas because a business cycle is typically
longer than six months. In the early version of this paper, we also employed the beta adjustment of Vasicek
(1973) to which our results again remain robust.

25In particular we use the model of Hamilton (1989), which has been applied in a number of studies to
stock returns, including Turner et al. (1989). This model has also been applied to studying long-run mean
reversion by Kim et al. (2001) and portfolio selection by Ang and Bekaert (2002).

26The model’s parameters were estimated using monthly stock returns on the value-weighted CRSP index
by maximum likelihood subject to the usual constraints to ensure non-degenerate solutions.
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(i.e., each stock’s alpha is zero):

ri,t = βi · rm,t + ei,t

where βi ∼ N(1, 0.3), and ei,t ∼ N(0, 8). We generate a total of 1000 returns, and fol-

low Jegadeesh and Titman (1993) to form 6/1/6 (decile) momentum portfolios. We follow

the convention of skipping a month between ranking and holding periods, even though we

obviously do not have any microsctructural effects to be concerned about in this simulation.

When we construct a simple test for a zero intercept in the usual market model using

the time series of returns on the WML portfolio, we reject the null hypothesis of zero alpha

88% of the time at the five percent level. This is striking because the unconditional CAPM

holds for every single stock, but the mechanics of selecting winners and losers in bull and

bear markets ensures that the WML portfolio has high betas during good times and negative

betas during down times. This produces a positive correlation between the conditional beta

and market returns, that biases the unconditional alpha upwards.

When we estimate betas using either the component-level beta or the hypothetical port-

folio return that include the ranking period return (with the sample selection bias), we

find a statistically significant but negative momentum effect. In fact, we reject the null

hypothesis in 83% of the samples at the five percent level, but of course with the negative

average momentum return. The negative return is consistent with the findings of Chordia

and Shivakumar (2002).

However, when we construct the test using component-level betas (or equivalently based

on hypothetical portfolio returns) but we only use pre-ranking period returns, we only reject

the null hypothesis 5.36% of the samples at the five percent level. These findings provide

strong support to our recommendation to estimate beta using component-level returns, but

to include only pre-ranking period returns – anything else would lead to substantial bias in

the test statistic.
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To further investigate how excluding ranking period returns helps avoid the bias, Table

3 reports the summary statistics, based on the Monte Carlo simulation, for betas estimated

using 120 months of pre-ranking period returns (correcting for the sample selection bias) and

betas estimated using 120 months of pre-holding period returns (including ranking period

returns, and hence incurring the sample selection bias), and then see how these betas are

close to the true beta.

< INSERT TABLE 3 HERE >

Table 3 shows that betas estimated using pre-ranking period returns (the third column)

are almost equal to the true beta whereas betas estimated with ranking period returns (the

second column) are biased (we know the true beta because it is what we use to simulate

stock returns from the CAPM). Table 3 also reaffirms our analysis of the direction of bias

in betas. During a bull (bear) market, the average return over the ranking period will

generally be higher (lower) than in the distant past (and recall that we use estimation

windows between 5 and 10 years of monthly returns), and for winner (loser) stocks we will

have positive (negative) residuals. This means that the bias in estimated pre-holding betas

will be positive for winner stocks and negative for loser stocks during up markets, while it

will be negative for winner stocks and positive for loser stocks during down markets. This

bias will serve to artificially amplify the dynamics of estimated betas relative to the true

beta dynamics.

Note that the positive unconditional alpha is driven by the positive covariance between

subsequent betas and the market returns (as shown in Subsection 4.4): during bull markets

the WML portfolio will have high betas, while during bear markets the WML portfolio

will typically have negative betas. Because of the (deliberate) stock selection of momentum

strategies over the ranking period, during bull markets the estimated WML portfolio beta

will be even higher than the true WML beta on average, and during bear markets the

estimated WML beta will be more negative than the true WML beta. Consequently, the

estimated alpha adjusting for time-varying risks will be too low or even negative, suggesting
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that the dynamics of beta artificially account for more of the estimated unconditional alpha

than the conditional CAPM can actually explain.

Empirically, Table 4 uses CRSP data and shows the magnitude of sample selection bias

in different NBER business cycles by comparing the difference between pre-holding period

betas (with the bias) and pre-ranking period betas (without the bias).27 Consistent with

our conjecture, the pre-holding period betas are on average higher than their pre-ranking

counterparts during expansions. During contractions, pre-holding betas are biased down-

wards and much lower than the pre-ranking-period estimates. For example, the difference in

market beta of momentum portfolios between the pre-holding period and pre-ranking period

is 0.02 (or approximately 22% higher) during expansions, but it is -0.11 during contractions.

The latter estimate represents an average decrease of 37% – economically large magnitude

that is sufficient to affect the risk-adjusted return.

As the bias correction reduces the exposure of momentum stocks to risk factors, we expect

that the bias-corrected alpha be higher. Surely, in order to explain the momentum anomaly

through beta risk exposure, one would need more exposure, rather than less. Admittedly,

this method of bias correction is not perfect, but it is consistent and not subject to the

sample selection through portfolio constructions. One of the objectives of this study is to

show that one needs a consistent and unbiased estimate of beta exposure rather than an

‘artificially’ increased exposure when betas are estimated using ranking period returns.

Readers may also be concerned that excluding the ranking period may miss out valuable

information. We argue that the trade-off is not large for momentum strategies with ranking

period up to one year. We test the sensitivity of this bias correction on 11/1/1 strategies

that rank stocks on the basis of 11 months of historical returns and then hold the WML

portfolio for one month. The bias-corrected alpha from the conditional FF3F model is

0.38% per month with an insignificant t-statistic of 0.77. The good performance of this bias

27Although the NBER business cycle dates are determined ex-post, we only use those dates to demonstrate
the bias and the time-varying dynamics of betas. We do not employ them in any of our estimations or portfolio
formations, and therefore there is no “look-ahead” bias.
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correction and the conditional FF3F model suggests that the loss of information is minimal

for momentum strategies with a short ranking period.

< INSERT TABLE 4 HERE >

The Main Results: Component-Level Risk Adjusted Returns Using CRSP Data

Table 5 reports the average component-level risk-adjusted return on momentum portfo-

lios, corrected for the sample selection bias. Panel A reports average risk-adjusted returns

from unconditional models where Zt−1 do not appear in the model 4 (no interaction terms).

The average unconditional CAPM alpha is 0.96% per month with the associated t-statistic

of 4.75, statistically significant at the 1% level. Comparing with the portfolio-level CAPM

alpha from panel B of Table 2, the component-level risk adjustment can only reduce the

average alpha by 8bps per month, which is economically small. Of note is the better per-

formance of the unconditional FF3F model with the average firm-level alpha of 0.78% per

month (t-statistic = 4.46), a reduction of 45bps per month compared with the portfolio-level

alpha in Table 2.28

However, this risk adjustment method with no conditioning variables may suffer from

overconditioning biases as argued by Boguth et al. (2011). Boguth et al. (2011) show that

running rolling regressions without conditioning variables will bias the average momentum

alpha due to the nonlinearity in payoffs of winners and losers. Indeed, we have shown above

that even at the firm level, individual winner and loser stocks are exposed to the market

risk differently in different economic states, causing payoffs to be nonlinear. We therefore

modify this model by allowing betas to be time-varying with the state variables, Zt−1, as in

Equation (4).

The first row of panel B reports the average time-varying risk-adjusted return at the

individual stock level using the conditional CAPM. The conditional CAPM further reduces

28This unconditional model is employed in Wang and Wu (2011), but they do not compare the performance
between the CAPM and FF3F model.
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the average alpha to 0.90% per month with the t-statistic of 4.12, still statistically significant

at the 1% level. The conditional FF3F model performs exceptionally well with the average

alpha of 0.61% per month (t-statistic = 2.13), statistically significant at the 5% level. This

represents a reduction of approximately 50% from the portfolio-level estimate. The better

performance of the conditional FF3F model is contrasted with Grundy and Martin (2001)

who estimate this model on aggregate portfolio returns.

Panel C shows average adjusted returns from the macroeconomic model of Chordia and

Shivakumar (2002):

radji,t = ri,t − rf − β̂DIVDIVt−1 − β̂TERMTERMt−1 − β̂DEFDEFt−1 − β̂Y LDY LDt−1 (7)

where DIV, TERM, DEF and YLD are the dividend yield, term spread, default spread,

and the yield on three-month T-Bill, respectively. Chordia and Shivakumar (2002) also add

another January dummy variable in the model. They show that their models can completely

explain momentum returns by making the average adjusted return negative. Panel C shows

that with the bias correction, the average adjusted return from the macroeconomic model is

positive and statistically significant. The average adjusted return from Model (7) is 5.03% per

month with the associated t-statistic of 2.33, statistically significant at the 5% level. Adding

the January dummy variable to the model reduces the average adjusted return to 4.04% per

month (t=1.80), statistically significant at the 10% level. Although the statistical significance

is not impressive, the economic magnitude of these returns is much higher than the raw

average momentum return of 1.01% per month, suggesting that Chordia and Shivakumar

(2002) model cannot explain momentum profits. The difference between our methodology

and theirs is exclusion of ranking period returns from the estimation. As we will present our

replication of Chordia and Shivakumar’s (2002) results in Subsection 4.6, the fact that the

average return changes from economically negative return to economically positive return

suggests the high sensitivity of including ranking period returns in the estimation.
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< INSERT TABLE 5 AROUND HERE >

4.4. Alpha Decomposition

In this subsection, we employ the well-known theoretical framework of Jagannathan and

Wang (1996) to understand why allowing betas to be time-varying at component levels can

enhance the explanatory power of conditional models. Jagannathan and Wang (1996) show

that when the conditional CAPM holds exactly, the unconditional alpha can be expressed

as follows:

αWML = cov(βt, rm,t)−
r̄m
σ2
m

cov(βt, σ
2
t ) (8)

The Appendix generalizes this alpha decomposition to multifactor models. In particular,

when the right-hand side is the Fama and French’s (1993) three risk factors, the unconditional

alpha can be represented as:

αWML = E(f ′tηi,t)− µ′fΣ−1f cov(f t,f
′
tηi,t) (9)

where E(ηit) = 0 from the relation: βit = β̄i + ηit; Σ−1f is the variance-covariance matrix

of risk factors; E(f ′tηi,t) = plim 1
T

∑T
t=1 f

′
tηi,t and E(f tf

′
tηi,t) = plim 1

T

∑T
t=1 f tf

′
tηi,t are

consistent estimators of the relevant expectations. Equation (9) nests Equation (8) such

that with ft = rmt, E(f ′tηi,t) = cov(rmt, ηit). It shows that when the conditional alpha is

equal to zero, the unconditional alpha can be high due to the market timining (the first

term) and volatility timing (the second term) components.

Lewellen and Nagel (2006) employ the aggregate return on momentum portfolios to

estimate short-horizon betas and find that the second term of Equation (9) is empirically so

small that it does not help improve the performance of the conditional CAPM. They also find

that the first term is approximately equal to -0.04. This small and wrong-signed covariance

leads Lewellen and Nagel (2006, p. 291) to conclude “no evidence that betas covary with

the market risk premium in a way that might explain the portfolio’s unconditional alphas.

Indeed, the covariances often have the wrong sign.”
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Boguth et al. (2011) find that volatility timing has a significant contribution to the alpha,

ranging from -0.22% to -0.17% per month. They show that running short-window rolling

regressions without instrumentation can incur “overconditioning” bias in which the contem-

poraneous realized beta contains estimation errors that are not known by the investors. This

overconditioning bias can be reduced by using longer estimation windows, but they show that

this reduction comes with the tradeoff of losing the time variation in betas. Boguth et al.

(2011, p. 375) suggest the use of value-weighted average betas estimated using individual

winner and loser stock’s (components) returns as a conditioning variable, which exploits the

“portfolio weights of individual stocks at the beginning of the investment period”.

As argued in the Introduction, our study builds on the intuition of Boguth et al. (2011) to

take advantage of the time variation in individual components’ betas. We do so by applying

conditional asset pricing models directly on individual stock returns, thereby uncovering not

only the portfolio weights of individual stocks but also undoing the mechanical way of sorting

stocks that may conceal the valuable information (Lo and MacKinlay, 1990a). It is important

to note that the conventional method of employing Ferson and Schadt (1996) conditional

models on portfolio returns has its disadvantage in the momentum context because it requires

researchers to correctly identify a conditioning variable that can capture the large variation

in portfolio compositions and weights. Using the component betas of Boguth et al. (2011)

as a conditioning variable is one way to mitigate the problem, but it does not account for

the arbitrary method of sorting stocks. Consequently, the component-level risk adjustment

is a straightforward candidate to tackle this problem.

We estimate Equation (9) using both portfolio and average component betas and re-

port results in Table 6. The first panel shows results from the unconditional betas at firm

and portfolio levels. Using contemporaneous portfolio-level betas (those betas in the third

graph of Figure 1), our estimates of the first and second terms of Equation (8) are -0.01%

and 0.00%, respectively, thereby causing the theoretical alpha to be -0.01%. The contem-

poraneous portfolio-level beta from the unconditional FF3F model also yield the negative
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theoretical alpha of -0.02% per month. These small and wrong-signed alphas are consis-

tent with Lewellen and Nagel (2006), suggesting that contemporaneous portfolio betas are

not volatile enough to intuitively predict the positive momentum alpha. The unconditional

component-level betas provide some improvements by correctly predicting the positive em-

pirical alpha. The unconditional alpha from the FF3F model is also economically large with

0.32% per month, but this mainly comes from the market timing component rather than the

volatility bias (the latter is important to account for as suggested by Boguth et al. (2011)).

Our main results are supported by the estimate from conditional component-level betas

(second panel). The alpha from the conditional FF3F model has the market timing and

volatility timing estimates of 0.57% and -0.21% per month, respectively, causing the final

alpha to be highly positive (0.78% per month). The high volatility timing estimate is also

consistent with the findings of Boguth et al. (2011), supporting our argument that the

component-level risk adjustment is consistent with their intuition of using lagged stocks’

betas as a conditioning variable.

The economically large alpha of 0.78% per month, which is much closer to the positive

average momentum return, is interesting because it says that we can find a significant time

variation in the component’s beta that is volatile enough to explain the observed momentum

return. Unlike Boguth et al. (2011) however, we find that the conditional FF3F model is

more powerful than the conditional CAPM. The second panel also shows that running rolling-

window regressions of conditional models on aggregate portfolio returns can also improve the

explanatory power of the conditional FF3F model, but the conditional beta is still not as

volatile as that at the component level.

In short, this subsection has provided a theoretical justification for the use of component-

level risk adjustment. We find that the average component-level beta is much more volatile

than the portfolio-level estimate, and this large time variation causes high momentum alphas.

4.5. Risk Loadings at Individual Stock (Component) Levels

Fama and French (1996) show that their three-factor model cannot explain returns on
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momentum strategies. The main puzzle they raise is that loser portfolios load more on

SMB and HML factors than winner portfolios. Thus, the FF3F model incorrectly predicts

that loser portfolios should have higher returns than their winner counterparts. Looking at

individual stocks’ risks, we find that their conditional model can explain 50% of the portfolio-

level alpha. In order to understand how the component-level risk adjustment can solve their

puzzle, we follow their approach (which they use to show that their model cannot predict

the continuation in returns) to examine the risk loading of individual stocks (components)

on each of the factors.

Panel A of Table 7 reports the average raw (unadjusted for risks) WML returns of 0.93%

and 0.51% per month during economic expansions and contractions as dated by the NBER

business cycles, respectively. Thus, momentum portfolios are much more profitable during

expansions than contractions. Panels B and C show the mean and standard deviation of

value-weighted average betas, which are estimated as in the first graph (components’ returns

with the correction of sample selection bias) and third graph (portfolio’s returns) of Figure 1,

respectively. To correctly predict momentum returns in panel A especially during economic

expansions, winners’ risk loadings should be higher than those of losers, and hence the

average WML beta should be positive.

The first row of Panel B show the value-weighted average of component-level market

betas. These betas are equivalent to those in Panel B of Table 1, except that betas here

are corrected for the bias by excluding ranking period returns from the estimation window.

Comparing betas in two tables, we can see that correcting for the bias slightly reduces the

magnitude of betas, but the contrasting market loadings of winner and loser stocks still

remain. Winner stocks have higher market loadings than losers during economic expansions,

causing the average WML beta to be positive (correctly predicting positive momentum

profits). This trend is reversed during economic contractions, suggesting that betas are

time-varying.

The loadings on SMB and HML are more interesting here. The general picture is that
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the SMB and HML loadings of WML portfolios have the right positive sign during economic

expansions. Winners behave like small distressed stocks, and therefore the FF3F model

correctly predicts that they will earn higher average returns than loser firms. This model

however does not perform as well during economic contractions, with the loading of WML

portfolio on SMB and HML factors are -0.08 and 0.00. Although these betas are negative

and close to zero, the fact that their magnitude is much lower than that estimated during

economic expansions correctly predicts that momentum portfolios are more profitable in

up markets. Another point is that all betas exhibit time variations as evidenced by the

contrasting changes in loadings of winner and loser stocks when the economy switches from

expansions to contractions. In short, applying the FF3F model on individual stock returns

can shed light on solving the puzzle of Fama and French (1996).

Again, these results, which have not been documented before, are concealed when asset

pricing models are estimated on aggregate portfolio returns. Panel C reports the average of

contemporaneous betas of winner/loser portfolios that are estimated by running 120-month

rolling window regressions of monthly WML returns on the risk factors. In general, the

picture in panel B is reversed here. The high (favorable) loading on the market risk of WML

portfolios during economic expansions now disappears. Average betas on SMB and HML

also incorrectly predict negative momentum profits in both states of the economy. Similar to

Fama and French (1996), loser portfolios load more on SMB and HML factors than winner

portfolios, counter-intuitively suggesting that losers should earn higher average returns than

winners. In other words, the puzzle of Fama and French (1996) is still unsolved when the

test is conducted on aggregate portfolio returns. Panel C also shows that although both

the CAPM and the FF3F model cannot predict momentum returns, the former model has a

less negative market beta in both economic states, indicating that Boguth et al. (2011) find

evidence in favor of the conditional CAPM because they estimate their models at portfolio

levels.

These findings suggest that momentum may be an artifact of the way stocks are selected
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in the portfolio. When stocks are grouped into portfolios the time variation and the asym-

metric behavior of winner and loser stocks are hidden. Winner/loser portfolios’ betas, when

estimated using monthly portfolio returns, become less time-varying and act differently to

those estimated using returns on individual stocks. This leads us to suspect that momentum

is a puzzle not because we lack an asset pricing model to explain it, but because the myth of

momentum is obscured by the mechanical way of stock selections. The asset pricing model

is therefore more powerful when being examined on individual stock components.

< INSERT TABLE 7 AROUND HERE >

4.6. The Sensitivity of Sample Selection Bias

As described earlier, the primary difference between our methodology of component-level

risk adjustments and previous research is that we correct for the sample selection bias by

excluding ranking period returns from the estimation window. In order to demonstrate the

sensitivity of this bias, we now replicate Chordia and Shivakumar (2002) and Wang and Wu

(2011) whose results are reported in Table 8. The methodology of this Table is similar to

that of Table 5, except that the estimation window is now the past 120 months of stock

returns from t − 120 to the end of the ranking period t − 1 (i.e., including the six-month

ranking period). Again, to avoid losing too much data, we employ 60-month window in the

first 120 months of a stock’s life and the full 120-month window afterward.

Panel A of Table 8 reports results from unconditional models where Zt−1 do not appear

in the model (4) (no interaction terms). The unconditional firm-level adjustment is employed

in Wang and Wu (2011). Comparing with average unconditional CAPM alpha of Table 5,

we can see that the sample selection bias does not affect the average alpha, which remains

at 0.96% per month (t-statistic = 4.96). The average alpha from the unconditional FF3F

model however is badly affected. The unconditional average FF3F alpha is 0.65% per month

(t-statistic = 3.63), which is a 13bps reduction from that in Table 5. Thus, having the sample

selection bias in place can reduce the average risk-adjusted returns even when betas are not

allowed to be time-varying.
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Panel B reports risk-adjusted returns from the full conditional model (4). The first row

of panel B reports the average time-varying risk-adjusted return at the individual stock

level using the conditional CAPM. The conditional CAPM performs exceptionally well by

reducing the average alpha to 0.61% per month with the t-statistic of 2.46, statistically

significant at the 5% level. The conditional FF3F model is even more aggressive in reversing

the momentum effect, with the average alpha being −0.29% per month (t-statistic = -0.86),

statistically insignificant even at the 10% level. These findings indicate that the bias causes

the conditional risk adjustment at component levels to explain all momentum returns.

Panel C shows the average adjusted returns from the macroeconomic model of Chordia

and Shivakumar (2002). Consistent with their study, panel C shows that their models can

also make momentum returns disappear. The average adjusted momentum return using

Equation (7) is −2.97% per month, which is economically significant although the t-statistic

is only −1.52. Adding the January dummy makes the adjusted return even more negative

with −3.45% per month (t-statistic = −1.63).

< INSERT TABLE 8 AROUND HERE >

In short, results in Table 8 are too good to be true because the sample selection bias

“forces” the asset pricing model to always “work”.

4.7. Sensitivity Analysis: Expanding-window Estimation

This subsection provides a robustness test on whether the component-level risk adjust-

ment is sensitive to expanding-window estimations. Specifically, we estimate the conditional

models using each component i’s returns over an extending window, starting from the first

month of stock’s returns to the month prior to the ranking period. This sensitivity test is

motivated by Fama and French (1992), Ferson and Harvey (1999), Lettau and Ludvigson

(2001), and Liu and Zhang (2008) who endorse the use of extending windows, which arguably

produces more accurate estimations due to having more data.
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Table 9 shows the average component-level alpha estimated similar to Table 5, but with

extending windows. Our conclusions do not change. Panel A reports the average alpha from

unconditional models. These alphas are not economically different from those of Table 5.

The average alpha from the unconditional FF3F is 0.80% per month (t-statistic = 4.55),

compared with the 0.78% per month (t-statistic = 4.46) of 120-month windows in Table 5.

Similarly, Panel B shows that the conditional FF3F model also performs well in terms of

reducing the average alpha, with 0.65% per month and the t-statistic of 2.35, statistically

significant at the 5% level. This represents a 45% reduction over the corresponding portfolio-

level estimate (Table 2). Finally, the average adjusted return from Chordia and Shivakumar’s

(2002) macroeconomic models is still highly positive, suggesting that this model is sensitive

to the correction of sample selection bias.

In short, this subsection has shown that our findings still hold under the expanding-

window estimation. It reconfirms that the correction for sample selection bias is crucial and

that the conditional FF3F model performs much better when being applied on the individual

component of momentum portfolios.

4.8. Sensitivity Analysis: Fama and French’s (1996) Momentum Portfolios

This subsection tests whether our main results still hold under a different construction

of momentum portfolios. In particular, we examine the momentum portfolio of Fama and

French (1996) in which stocks are ranked based on their continuously compounded returns

over the past year, and the portfolio is held for one month with one-month skipping pe-

riod in between. Although we can confirm the robustness of our findings in other strategy

formations of Jegadeesh and Titman (1993), we report the results for Fama and French’s

(1996) portfolios to be consistent with Fama and French (1996) and many subsequent papers

(e.g., Grundy and Martin (2001) and Asness et al. (2013)). Because these strategies have

one-month holding period, they are rebalanced more frequently and therefore we expect that

conditional asset pricing models are more powerful when being applied on individual com-

ponents’ returns. Again, this high explanatory power comes from its ability to account for
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the frequent change in portfolio compositions and weights of the portfolio’s components.

Table 10 reports average risk-adjusted returns, which are computed similarly as in Table

5. Panel A shows the results from unconditional models in which state variables are not

included in the regression. We can see that both the unconditional CAPM and FF3F model

cannot explain momentum returns. The average alpha from the CAPM is 1.19% per month

(t-statistic = 4.85) while the FF3F model has the average alpha of 0.95% per month (t-

statistic=4.37); both of them are statistically significant at the 1% level.

Panel B shows average alphas from conditional models. We see a better picture here where

the conditional CAPM yields the average risk-adjusted return of 0.96% per month (t-statistic

= 3.10), statistically significant at the 1% level. The conditional FF3F model performs

exceptionally well by reducing the average alpha to only 0.38% per month (t-statistic =

0.77), statistically insignificant even at the 10% level. This reduction is also economically

large with 60% down from the conditional CAPM. These findings confirm our conjecture

that, as the Fama and French’s (1996) momentum portfolios involve frequent rebalancing

and changes in the weight of individual stocks, the component-level risk adjustment from the

FF3F model can correctly account for the time variation of individual components’ betas,

which are not seen on the aggregate portfolio return. Finally, panel C shows average returns

from Chordia and Shivakumar’s (2002) macroeconomic model. Consistent with the earlier

findings that, once we correct for the sample selection bias, the average WML return becomes

economically positive, ranging from 3.76% per month to 5.03% per month although they are

still statistically insignificant.

In short, our findings also hold for the popular momentum portfolio of Fama and French

(1996). Fama and French (1996) find that their FF3F model inflates the momentum alpha

rather than reducing it when being applied on aggregate portfolio returns. Using the same

momentum portfolio construction, we find empirical support for their multifactor model.

The conditional FF3F model performs well by reducing the average alpha to 0.38% per

month, representing a 60% reduction from the conditional CAPM estimate.
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5. Conclusion

We argue that the momentum effect is an artifact of the way stocks are selected into

portfolios. Particularly, stocks are picked in such a way that their time-varying dynamics are

concealed on aggregate portfolio returns. The conventional method of employing conditional

models on portfolio returns has its disadvantage in the momentum context because it requires

researchers to correctly identify a conditioning variable that can (a) capture the true variation

in portfolio compositions and weights and (b) uncover the mechanical selection of stocks by

momentum strategies (Lo and MacKinlay, 1990a). Consequently, the component-level risk

adjustment is a straightforward way to tackle these problems. Motivated by this observation,

we find that the puzzle of Fama and French (1996) can be solved by looking at returns on

individual winner and loser stocks (components). Winner stocks load more on the SMB and

HML factors than do losers. Therefore, winners should earn higher future average returns

and losers should earn lower average returns, causing positive expected momentum profits.

We pick two of the most popular momentum portfolios in the literature to report our

results. The first one is the 6/1/6 momentum portfolio of Jegadeesh and Titman (1993). We

find that the conditional FF3F, when being used to risk adjust returns on individual stocks

(components) of the portfolio, reduces the average alpha to 0.61% per month (t-statistic =

2.13), representing a 50% decrease from the portfolio-level estimate. The second portfolio is

consistent with Fama and French (1996), which has only one-month holding period. Because

the component-level risk adjustment can correctly account for the frequent change in weights

and portfolio’s compositions, the conditional FF3F model performs exceptionally well with

the average alpha of 0.38% (t-statistic = 0.77), statistically insignificant even at the 10%

level.

Another important contribution of this study is to point out the bias in the existing

component-level risk adjustment in which winner and loser betas are biased due to the

inclusion of ranking period returns in the estimation. Because of this bias, asset pricing

models that account for time-varying risks can completely explain momentum returns. We
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propose a simple correction by excluding the ranking period returns from the estimation.

Our simulations confirm that this exclusion of ranking period returns in fact provides an

estimated beta nearly identical to the true beta. Using CRSP data, we find that the negative

adjusted momentum returns (ranging from -2.97% to -3.45% per month) in Chordia and

Shivakumar (2002) become economically positive ranging from 3.76% to 5.03% per month

after the bias correction. For the conditional FF3F model and CAPM, although the bias-

corrected risk adjustment still cannot fully explain momentum returns, the average alpha is

still significantly (50%) lower than the corresponding portfolio-level estimate.

We acknowledge that our method of bias correction is not perfect. To the extent that

the information of ranking period is missed out, some of our conclusions need to be verified

by using more complex econometrics methods, which would have to accomplish at least

two goals: (1) correctly identifying an instrumental variable that correctly captures the time

variation and frequent changes in the composition of momentum portfolios, and (2) fixing the

‘sample selection’ bias incurred through the process of portfolio construction. Nevertheless,

we do not wish to imply that this method will also work for other portfolios with ranking

periods of more than one year. Our results show that, for conventional momentum strategies

that employ ranking periods of up to 11 months, our simple straightforward method produces

consistent and unbiased estimate of betas. Recall that the bias correction still works well

on the 11/1/1 strategy – suggesting that the loss of information is not excessively large and

the time variation of stock components is still maintained. This is not surprising because an

economic cycle typically lasts for much more than one year.
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Table 1: Descriptive Statistics, January 1963 to December 2009
Panel A reports the summary statistics of the three instrumental variables, namely the dividend yield
(DY), the default spread (DEF), and the term spread (TERM). The sample period is from January 1963 to
December 2009. SD is the standard deviation. AC(1) and AC(12) are the autocorrelation with lag 1 and
lag 12, respectively. The two right-most columns present the correlation between the variables. Panel B
shows the statistics of the same variables as well as the cross-sectional average of winner and loser betas
during expansions and contractions, as dated by the NBER business cycles. The last two columns of panel
B reports the average change in beta loadings from peak to trough and trough to peak, respectively. The
sample period in panel B is intentionally lengthened from January 1936 to December 2009 since we want
to capture more expansions and contractions of the economy. The firm-level average loading on the market
risk are constructed as follows. At the end of each ranking period t − 1, the CAPM is run on each winner
and loser stock using returns from t − 120 to t − 1 (as we will show in later section, this window includes
ranking period returns and hence biases the estimated beta. For the purpose of comparing between biased
beta and non-biased beta (reported in Table 7), we present the biased beta in this Table). Betas are
preserved each month and the value-weighted average across winner and loser stocks is computed to get
the monthly time-series of average betas whose descriptive statistics are reported in the first three rows
of Panel B. We also compute contemporaneous betas on the momentum portfolios by running 120-month
rolling window regressions of portfolio returns on the market risk. We report these portfolio-level betas in
rows four to six of Panel B.

Panel A: Descriptive Statistics (January 1963 to December 2009)

Correlation
Mean (%) SD (%) AC(1) AC(12) DEF TERM

DY 3.12 1.18 0.99 0.89 0.46 −0.16
DEF 1.04 0.48 0.97 0.56 0.25
TERM 1.69 1.52 0.95 0.51

Panel B: Business Cycle Dependence (January 1936 to December 2009)

Expansion Contraction Average Change
Mean SD (%) Mean SD (%) Peak-Trough Trough-Peak

Component-level Winner Betas 1.23 0.26 0.96 0.28 −0.26 0.13
Component-level Loser Betas 1.12 0.25 1.26 0.23 0.05 −0.13
Component-level WML Betas 0.11 0.43 −0.30 0.45 −0.30 0.26
Portfolio-level Winner Betas 1.30 0.11 1.34 0.11 −0.06 −0.05
Portfolio-level Loser Betas 1.38 0.20 1.41 0.21 −0.13 −0.01
Portfolio-level WML Betas −0.08 0.22 −0.07 0.17 0.07 −0.04
DY 3.71% 1.54 4.38% 1.57 0.70% −0.87%
DEF 0.97% 0.45 1.29% 0.72 0.52% −0.48%
TERM 1.71% 1.25 1.30% 1.31 1.85% −1.85%
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Table 2: Portfolio-Level Risk Adjustment
This table reports risk-adjusted returns on momentum portfolios using unconditional models (panel B)
and conditional models (panel C) between January 1963 and December 2009. All returns (reported in
percentages) are risk-adjusted (i.e. estimated intercepts) by regressing excess raw returns on the risk factors
(Equation (1)) and their interactions with the state variables (Equation 2). The factors are excess returns
on the market (RM ) or the Fama and French’s (1993) three factors (FF3F). Three state variables are
dividend yield, term spread and the default spread. WML is the return on winner− loser portfolios. Stocks
are required to have at least 24 months of valid returns over the past 60 months to be ranked. t− statistics
calculated using Newey and West (1987) standard errors with six lags are reported in parentheses. ∗, ∗∗, ∗∗∗
represent the significance levels at 10%, 5% and 1%, respectively.

Models Winners Losers WML

Panel A: Raw returns
Raw Returns 1.57 0.56 1.01

(6.71)∗∗∗ (2.52)∗∗ (4.87)∗∗∗

Panel B: Unconditional risk adjustment
CAPM 0.53 −0.52 1.04

(3.22)∗∗∗ (−3.18)∗∗∗ (5.23)∗∗∗

FF3F 0.49 −0.74 1.23
(4.09)∗∗∗ (−5.61)∗∗∗ (5.90)∗∗∗

Panel C: Conditional risk adjustment
CAPM 0.58 −0.46 1.04

(3.30)∗∗∗ (−2.54)∗∗∗ (4.67)∗∗∗

FF3F 0.52 −0.68 1.19
(4.55)∗∗∗ (−4.73)∗∗∗ (5.55)∗∗∗
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Table 3: Bias in Estimated Betas: Monte Carlo Simulation
This table reports summary statistics for CAPM betas estimated from Monte Carlo simulations, which
are described in the text. True-β denotes the beta used to simulate stock returns. Pre-Holding-β denotes
the average beta estimated using 120 months of returns on individual stocks (components) that include the
ranking period. Pre-Ranking-β denotes the average beta estimated using 120 months of returns on individual
stocks, but the estimation window does not include the ranking period.

Winner Loser

True-β Pre-Holding-β Pre-Ranking-β True-β Pre-Holding-β Pre-Ranking-β

Bull Market 1.0370 1.0539 1.0370 0.9636 0.9470 0.9634
Bear Market 0.9427 0.8166 0.9425 1.0584 1.1860 1.0583
Unconditional 1.0211 1.0143 1.0210 0.9796 0.9869 0.9794

Table 4: Empirical Magnitude of Bias in Estimated Betas
This table reports the empirical magnitude of sample selection bias estimated using CRSP data over business
cycles as dated by the NBER between January 1936 and December 2009 (the sample period is extended to
1936 to capture more economic expansions and contractions). Betas are estimated using 120-month returns
on individual stocks (components) of the momentum portfolio at the end of the ranking period (similar to the
first graph of Figure 1). Reported numbers are the average difference between betas estimated with sample
selection bias (including ranking period returns in the estimation) and betas without the bias (excluding
ranking period returns from the estimation).

Expansion Contraction
Winners Losers WML Winners Losers WML

RM 0.01 −0.01 0.02 −0.05 0.06 −0.11
(0.06) (0.04) (0.09) (0.06) (0.08) (0.12)

SMB 0.02 0.01 0.01 −0.01 0.03 −0.04
(0.09) (0.07) (0.15) (0.07) (0.07) (0.14)

HML 0.01 0.02 −0.01 −0.01 0.04 −0.05
(0.11) (0.09) (0.19) (0.10) (0.13) (0.22)
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Figure 1: Time-Series Betas of Momentum Portfolios
The figure plots the time-series market beta on 6/1/6 winner-minus-loser (WML) portfolios from January
1936 to December 2009 (the sample period is extended to 1936 to capture more economic expansions and
contractions). The first graph plots the value-weighted average loadings of individual stocks (components)
in the WML portfolio, corrected for sample selection bias. At the end of each ranking period, 120 months
(from t − 120 − 6 to t − 6) of excess returns on each stock i in the winner and loser portfolios is regressed
against the excess returns on the market. The betas are preserved each month and the value-weighted
average of betas across winner and loser stocks are computed taking into account the market capitalization
of each stock at the end of ranking periods. The second graph plots the average betas on the value-weighted
hypothetical portfolios. At the end of each ranking period, we compute the weighted average returns on
winner and loser stocks over the past 120 months (t−120−6 to t−6). This gives us 120 months of portfolio
returns, which are then regressed on the excess market return to obtain portfolio-level beta at the end of
the ranking period. We repeat this portfolio formation and the regression test as we form a new overlapping
momentum portfolio in the following month. Since the portfolio beta should be equal to the weighted
average of individual stocks’ betas, we expect hypothetical portfolio betas and firm-level betas to be highly
correlated. In fact, the correlation between these two time-series of betas is 0.98. The third graph plots the
contemporaneous betas, which are computed by running 120-month rolling window regressions of monthly
value-weighted WML portfolio returns on the market (to make betas comparable, the momentum portfolio
in the third graph is also value-weighted). In order to use all data, we employ windows of 60 months in the
first 120 months and then the full 120 months afterward. Vertical lines represent the peaks and troughs of
business cycles as dated by the NBER.
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Table 5: Component-Level Risk-Adjusted Momentum Returns
This table reports average risk-adjusted returns on 6/1/6 momentum portfolios from January 1963 to De-
cember 2009. 6/1/6 overlapping portfolios are constructed by ranking returns over the past 6 months and
then skip one month before holding stocks for the next 6 months. The strategy is followed every month.
In panel B, returns on each individual stock in the winner and loser portfolios are risk-adjusted using the
following model:

radji,t = ri,t − rf −
K∑
j=1

(β̂
>
ijZt−1)f jt

where β>ij is estimated using 120-month returns prior to the ranking period (i.e, ranking period returns
are not included in the estimation). In order to avoid losing too much data, we use 60-month windows
of returns in the first 120 months and then use the full 120-month window after that. Risk factors, f jt,
are excess returns on the market (RM ) or Fama and French three factors (FF3F). State variables, Zt−1,
are dividend yield, term spread, and the default spread. Panel A reports average risk-adjusted returns
that are similarly computed as in panel B, except that the unconditional model does not have interaction
terms between risk factors and state variables (without Zt−1). Returns are reported in percentages. WML
is the return on winner − loser portfolios. Panel C shows average adjusted returns from macroeconomic
model of Chordia and Shivakumar (2002), which includes the three state variables in this study, the yield
on three-month T-bills, and a January dummy (without risk factors, f jt). t-statistics from the method
outlined in Cochrane (2005) are reported in parentheses; the adjustment factor is calculated using formula
(5). ∗, ∗∗, ∗ ∗ ∗ represent the significance levels at 10%, 5% and 1%, respectively.

Models Winners Losers WML

Panel A: Unconditional risk adjustment
CAPM 0.55 −0.41 0.96

(3.58)∗∗∗ (−2.43)∗∗∗ (4.75)∗∗∗

FF3F 0.27 −0.51 0.78
(2.83)∗∗∗ (−3.85)∗∗∗ (4.46)∗∗∗

Panel B: Time-varying risk adjustment
CAPM 0.67 −0.23 0.90

(3.86)∗∗∗ (−1.22) (4.12)∗∗∗

FF3F 0.17 −0.44 0.61
(0.82) (−2.74)∗∗ (2.13)∗∗

Panel C: Chordia and Shivakumar’s (2002) conditional macroeconomic adjustment
Macro variables −4.52 −9.55 5.03

(−1.73)∗ (−3.30)∗∗∗∗ (2.34)∗∗

Macro and Jan −7.1991 −11.24 4.04
(−2.75)∗∗∗ (−3.98)∗∗∗ (1.79)∗
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Table 6: Alpha Bias Decomposition
This table reports the theoretical unconditional alpha from Equation (9), which are estimated either at the
component level or at the portfolio level between 1963 and 2009. The unconditional alpha is decomposed
into two components namely market timing and volatility timing. The component-level beta is estimated
in a similar way to that in Table 5, which corrects for the sample selection bias while the contemporaneous
portfolio-level beta is estimated by running 120-month rolling regressions of portfolio returns on condi-
tional/unconditional models.

Models Alpha (%) = Market Timing (%) − Volatility Timing (%)

Unconditional component-level betas
CAPM 0.07 0.04 −0.03
FF3F 0.32 0.26 −0.06

Unconditional portfolio-level betas
CAPM −0.01 −0.01 0.00
FF3F −0.02 −0.10 −0.07

Conditional component-level betas
CAPM 0.32 0.27 −0.05
FF3F 0.78 0.57 −0.21

Conditional portfolio-level betas
CAPM −0.04 −0.09 −0.05
FF3F 0.15 −0.03 −0.18
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Table 7: Business Cycle Dependence of Momentum
This table reports means and standard deviations (reported in parentheses) for the series of value-weighted
average winner and loser betas (corrected for sample selection bias) during economic expansions and con-
tractions as dated by the NBER business cycles between January 1936 and December 2009. The sample
period is lengthened to capture more economic expansions and contractions. Panel A reports average raw
(unadjusted for risks or returns on the conventional momentum strategies) profits on winner and loser port-
folios. Panel B shows average component-level betas of winner and loser stocks while panel C presents
average betas for winner and loser portfolios. To compute the average component-level beta in panel B, we
run time-series market regressions using 120 months of returns (prior to the ranking period) of individual
winner and loser stocks and preserve the betas (the stock constituents are the same across all tables). After
skipping six-month ranking period to avoid the sample selection bias, value-weighted average of stock’s betas
are computed taking into account the market capitalization of stocks at the end of each ranking period. The
process is repeated every month as we form a new overlapping portfolio. To avoid losing too much data,
the estimation window is 60 months in the first 120 months of a stock’s life. To compute average betas at
portfolio levels (panel C), we form 6/1/6 value-weighted momentum portfolios as normal to get time series of
monthly returns (to make betas comparable, the momentum portfolio in the third graph is value-weighted).
We then run 120-month rolling regressions across the monthly return series to obtain contemporaneous port-
folio betas. Risk factors are market returns (RM ), SMB, and HML. “WML” column shows the average beta
on the winner-minus-loser portfolio.

Expansion Contraction
Winners Losers WML Winners Losers WML

Panel A: Raw momentum returns
1.90% 0.97% 0.93% −0.39% −0.91% 0.51%

(0.08) (0.07) (0.05) (0.08) (0.11) (0.06)

Panel B: Component-level rolling betas
RM 1.22 1.13 0.09 1.00 1.21 −0.21

(0.24) (0.24) (0.38) (0.25) (0.23) (0.42)
SMB 0.38 0.19 0.19 0.15 0.23 −0.08

(0.36) (0.27) (0.54) (0.23) (0.29) (0.42)
HML 0.16 0.03 0.13 0.15 0.15 0.00

(0.32) (0.27) (0.43) (0.30) (0.34) (0.57)

Panel C: Portfolio-level rolling betas
RM 1.30 1.38 −0.08 1.34 1.41 −0.07

(0.11) (0.20) (0.22) (0.11) (0.21) (0.17)
SMB 0.70 0.87 −0.16 0.65 0.84 −0.18

(0.25) (0.21) (0.39) (0.27) (0.22) (0.43)
HML −0.04 0.20 −0.24 −0.00 0.20 −0.20

(0.18) (0.17) (0.24) (0.16) (0.10) (0.17)
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Table 8: Component-Level Risk Adjusted Momentum Returns, with Sample Selection Bias
This table reports average risk-adjusted returns on 6/1/6 momentum portfolios between January 1963 and
December 2009. 6/1/6 overlapping portfolios are constructed by ranking returns over the past 6 months and
skip one month before holding stocks for the next 6 months. The strategy is followed every month. In panel
B, returns on each individual stock in the winner and loser portfolios are risk-adjusted using the following
model:

radji,t = ri,t − rf −
K∑
j=1

(β̂
>
ijZt−1)f jt

where β>ij is estimated using the past 120-month returns from t-120 to t-1 (i.e. 120 months prior to the
holding period). Risk factors, f jt, are the excess return on the market (RM ) or Fama and French three
factors (FF3F). State variables, Zt−1, are dividend yield, term spread, and the default spread. Panel A
reports risk-adjusted returns that are similarly computed as in panel B, except that the model does not have
interaction terms between risk factors and state variables. Returns are reported in percentages. WML is
the returns on winner − loser portfolios. Panel C shows the adjusted returns from macroeconomic model
of Chordia and Shivakumar (2002), which includes three state variables, the yield on three-month T-bills,
and a January dummy (without risk factors, f jt). t-statistics from the method outlined in Cochrane (2005)
are reported in parentheses; the adjustment factor is calculated using formula (5). ∗, ∗∗, ∗ ∗ ∗ represent the
significance levels at 10%, 5% and 1%, respectively. Stocks are required to have at least 24 months of valid
returns over the past 60 months to be ranked. The estimation window is 60 months in the first 120 months
of a stock’s life, afterward the window is extended to 120 months.

Models Winners Losers WML

Panel A: Unconditional risk adjustment
CAPM 0.54 −0.42 0.96

(3.58)∗∗∗ (−2.51)∗ (4.96)∗∗∗

FF3F 0.1986 −0.45 0.65
(1.70)∗ (−3.70)∗∗∗ (3.63)∗∗∗

Panel B: Time-varying risk adjustment
CAPM 0.42 −0.19 0.61

(2.24)∗∗ (−1.03) (2.46)∗∗

FF3F −0.29 0.01 −0.29
(−1.45) (0.01) (−0.87)

Panel C: Chordia and Shivakumar’s (2002) conditional macroeconomic adjustment
Macro variables −10.79 −7.82 −2.97

(−7.91)∗∗∗ (−6.79)∗∗∗ (−1.52)
Macro and Jan −12.79 −9.34 −3.45

(−2.42)∗∗ (−2.07)∗∗ (−1.63)
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Table 9: Component-Level Risk-Adjusted Momentum Returns, Expanding-Window Estima-
tion
This table reports average risk-adjusted returns on 6/1/6 momentum portfolios between January 1963 and
December 2009. 6/1/6 overlapping portfolios are constructed by ranking returns over the past 6 months and
then skip one month before holding stocks for the next 6 months. The strategy is followed every month.
In panel B, returns on each individual stock in the winner and loser portfolios are risk-adjusted using the
following model:

radji,t = ri,t − rf −
K∑
j=1

(β̂
>
ijZt−1)f jt

where βT
ij is estimated using returns over an extending window, starting from the first month to the month

prior to the ranking period (i.e, ranking period returns are not included in the estimation). Risk factors,
fjt, are excess returns on the market (RM ) or Fama and French three factors (FF3F). State variables, Zt−1,
are dividend yield, term spread, and default spread. Panel A reports risk-adjusted returns that are similarly
computed as in panel B, except that the unconditional model does not have interaction terms (without
Zt−1). Returns are reported in percentages. WML is the return on winner − loser portfolios. Panel
C shows average adjusted returns from macroeconomic model of Chordia and Shivakumar (2002), which
includes the three IVs in this study and the yield on three-month T-bills and a January dummy (without
risk factors, fjt). t-statistics from the method outlined in Cochrane (2005) are reported in parentheses; the
adjustment factor is calculated using formula (5). ∗, ∗∗, ∗∗∗ represent the significance levels at 10%, 5% and
1%, respectively.

Models Winners Losers WML

Panel A: Unconditional risk adjustment
CAPM 0.53 −0.44 0.97

(3.47)∗∗∗ (−2.62) (4.79)∗∗∗

FF3F 0.30 −0.50 0.80
(3.13)∗ (−3.76) (4.55)∗∗

Panel B: Time-varying risk adjustment
CAPM 0.66 −0.25 0.91

(3.85)∗ (−1.34) (4.13)∗∗∗

FF3F 0.20 −0.45 0.65
(0.96)∗ (−2.87) (2.35)∗∗

Panel C: Chordia and Shivakumar’s (2002) conditional macroeconomic adjustment
Macro variables −4.91 −9.52 4.61

(−1.96)∗ (−3.41) (2.23)∗∗

Macro and Jan −7.41 −11.09 3.68
(−3.01)∗ (−4.08) (1.69)∗
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Table 10: Component-Level Risk-Adjusted Returns on Fama and French (1996) Momentum
Portfolios
This table reports average risk-adjusted returns on Fama and French’s (1996) momentum portfolios from
January 1963 to December 2009. Momentum portfolios are constructed by ranking stock returns over the
past 11 months and then skip one month before holding stocks for the next one month. The strategy is
followed every month. In panel B, returns on each individual stock in the winner and loser portfolios are
risk-adjusted using the following model:

radji,t = ri,t − rf −
K∑
j=1

(β̂
>
ijZt−1)f jt

where β>ij is estimated using 120-month returns prior to the ranking period (i.e, ranking period returns are
not included in the estimation). In order to avoid losing too much data, we use 60-month windows of returns
in the first 120 months and then use the full 120-month window after that. Risk factors, fjt, are excess
returns on the market (RM ) or Fama and French three factors (FF3F). State variables, Zt−1, are dividend
yield, term spread, and default spread. Panel A reports average risk-adjusted returns that are similarly
computed as in panel B, except that the unconditional model does not have interaction terms (without
Zt−1). Returns are reported in percentages. WML is the return on winner − loser portfolios. Panel
C shows average adjusted returns from macroeconomic model of Chordia and Shivakumar (2002), which
includes the three IVs in this study and the yield on three-month T-bills and a January dummy (without
risk factors, fjt). t-statistics from the method outlined in Cochrane (2005) are reported in parentheses; the
adjustment factor is calculated using formula (5). ∗, ∗∗, ∗∗∗ represent the significance levels at 10%, 5% and
1%, respectively.

Models Winners Losers WML

Panel A: Unconditional risk adjustment
CAPM 0.70 −0.49 1.19

(4.04)∗∗∗ (−2.73)∗∗∗ (4.85)∗∗∗

FF3F 0.40 −0.55 0.95
(3.43)∗∗∗ (−3.86)∗∗∗ (4.37)∗∗∗

Panel B: Time-varying risk adjustment
CAPM 0.78 −0.18 0.96

(3.65)∗∗∗ (−0.83) (3.10)∗∗∗

FF3F 0.12 −0.26 0.38
(0.40) (−1.02) (0.77)

Panel C: Chordia and Shivakumar’s (2002) conditional macroeconomic adjustment
Macro variables −4.35 −9.38 5.03

(−1.47) (−3.12)∗∗∗∗ (1.75)∗

Macro and Jan −7.31 −11.07 3.76
(−2.47)∗∗ (−3.73)∗∗∗ (1.26)
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Appendices

A. Derivations of Alpha Decomposition in Multifactor Models

Consider a multi-factor pricing model

rit = f ′t · βit + eit

where f t = µt + ut and βit = β̄i + ηit and E(ηit) = 0 and is likely to be positively serially

correlated. Consider estimating the unconditional version of the CAPM, with

θ̂T =

(
1

T

T∑
t=1

X tX
′
t

)−1
1

T

T∑
t=1

X trit

where

θ̂ =

α̂U

β̂
U


and X t = (1,f ′t)

′. Under quite general regulatory conditions we have

plimθ̂T = Q−1plim
1

T

T∑
t=1

X trit

where

Q = plim
1

T

T∑
i=1

X tX
′
t =

 1 µ′f

µf Σf + µfµ
′
f


and using the partitioned matrix inverse formula we have

Q−1 =

1 + µ′fΣ
−1
f µf −µ′fΣ−1f

−Σ−1f µf Σ−1f

 .
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We note that

plim
1

T

T∑
t=1

X trit = plim
1

T

T∑
t=1

X t(f
′
tβi + f ′tηi,t + εi,t)

= plim
1

T

T∑
t=1

 f ′t

f tf
′
t


︸ ︷︷ ︸

=


µ′f

Σf + µfµ
′
f



βi + plim
1

T

T∑
t=1

 f ′tηi,t

f tf
′
tηi,t

+ plim
1

T

T∑
t=1

X tεi,t︸ ︷︷ ︸
=0

So we then have

plimθ̂T −

 0

β̄i

 = Q−1plim
1

T

T∑
t=1

 f ′tηi,t

f tf
′
tηi,t


and in particular

plimα̂T = (1 + µ′fΣ
−1
f µf )E(f ′tηi,t)− µ′fΣ−1f E(f tf

′
tηi,t)

= E(f ′tηi,t)− µ′fΣ−1f cov(f t,f
′
tηi,t) (10)

where E(f ′tηi,t) = plim 1
T

∑T
t=1 f

′
tηi,t and E(f tf

′
tηi,t) = plim 1

T

∑T
t=1 f tf

′
tηi,t are consistent

estimators of the relevant expectations.
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