
Deep Learning Factor Alpha∗

Guanhao Feng†

College of Business

City University of Hong Kong

Nicholas G. Polson ‡

Booth School of Business

University of Chicago

Jianeng Xu§

Booth School of Business

University of Chicago

Link to the Latest Version

Abstract

Does a factor model exist that explains all anomalies? To address this questions we provide an

automated factor search algorithm that generates long-short spread factors within deep learning.

This performs a deep search over a multi-layer space of multivariate characteristics used for

security sorting with one asset pricing objective: minimizing alphas. Sorting securities on firm

characteristics, a common practice in finance, can be viewed as a nonlinear activation function.

Our deep factor are trained greedily and we use a time series regression with deep factors over

a benchmark models, such as Fama-French. We have designed a train-validation-test study for

monthly U.S. equity returns from 1975 to 2017 and 56 published firm characteristics. In an out-

of-sample evaluation, deep factor alpha provides a forecasting improvement over a benchmark

with factors that offer significant alphas.

Key Words: Characteristic-based Anomalies, Cross-Sectional Returns, Deep Learning, Long-

Short Factors, Security Sorting, Mispricing Alpha, Neural Network.

∗We appreciate insightful comments from Li Deng and Dacheng Xiu. We are also grateful to helpful comments from
seminar and conference participants at R/Finance 2018, and EcoSta 2018. We acknowledge research support from the
Unigestion Alternative Risk Premia Research Academy.
†Address: 83 Tat Chee Avenue, Kowloon Tong, Hong Kong. E-mail address: gavin.feng@cityu.edu.hk.
‡Address: 5807 S Woodlawn Avenue, Chicago, IL 60637, USA. E-mail address: ngp@chicagobooth.edu.
§Address: 5807 S Woodlawn Avenue, Chicago, IL 60637, USA. E-mail address: jianeng@uchicago.edu.

1

https://arxiv.org/abs/1805.01104

One of our central themes is that if assets are priced rationally, variables that are related to average

returns, such as size and book-to-market equity, must proxy for sensitivity to common (shared and thus

undiversifiable) risk factors in returns.

In such regressions, a well-specified asset-pricing model produces intercepts that are indistinguishable

from 0 [Merton (1973)]. The estimated intercepts provide a simple return metric and a formal test of how

well different combinations of the common factors capture the cross section of average returns.

— Fama and French (1993)

1 Introduction

Empirical finance researchers have identified many patterns or anomalies in cross-sectional

average stock returns1. The standard protocol is to build portfolios that sort on firm characteristics

(size, earnings/price, book-to-market equity, etc.) and to test its “alpha” by regressing the long-

short spread of sorted portfolios over a benchmark, such as CAPM. A significant intercept indicates

the long-short spread factor is not spanned by the benchmark and could mean an anomaly. A

subsequent test is to check if this factor proxies for some common risk factor and explains the

average returns. Fama and French (1992) are pioneers in the field and show different measures of

firm characteristics related to the size and value anomalies line up with average returns of sorted

portfolios. Fama and French (1993) add Small-minus-Big and High-minus-Low to explain these two

anomalies by substantially reducing the average pricing errors.

Our paper provides an automated algorithm that generates characteristic-based factors, and a

parsimonious model of returns and average returns that absorbs anomalies and cross-sectional pric-

ing errors. The factor model provides a dimension-reduction formulation that summarizes the time

series variation of thousands of securities to a few factors. Characteristic-based long-short spread

factors are popular because they reflect compensation for exposure to underlying risk factors and

can be tested by the regression intercept alpha as a tradable portfolio. However, many of these

characteristics are highly related to each other from the perspective of accounting, trading, or eco-

nomics. Therefore, how their sorted portfolios have a vast difference due to the minor construction

difference in characteristics is unclear.
1See Harvey, Liu, and Zhu (2016), Green, Hand, and Zhang (2017) and Hou, Xue, and Zhang (2017)

2

Given the zoo of factors or characteristics, we attempt to answer a similar question in Fama and

French (1996): Does a factor model exist that dissects the existing anomalies? To provide a unified

framework for the characteristic-based factor generation, we propose the use of a deep learning

algorithm to explore the multi-layer space of multivariate characteristics for security sorting and

generate long-short spread factors with a pure optimization perspective: minimizing alphas.

First, the widely used security sorting is a quantile function and can be viewed as a nonlinear

activation function within the model training. Second, our algorithm searches for the best trans-

formation and combination of firm characteristics while controlling for a benchmark model, and

thus deep factors are not spanned by the benchmark. Third, it is a greedy algorithm that takes the

feedback of the loss function through the channel of backward propagation: how to change the

sorted characteristics to decrease the average pricing errors further. Forth, when a new characteris-

tic is proposed, we can test the incremental contribution of its optimal long-short spread beyond a

benchmark model.

To generate the deep factors, we use the stock universe with the annual largest 3000 firms in

the U.S. equity market and 56 published characteristics from Green et al. (2017). In an out-of-sample

evaluation, we use the period 1975-2004 to train the model and generate deep factor to predict the

period 2005-2017. Our deep factor model outperform the benchmark CAPM, FF3, and FF5 by 12.5%,

1%, and 2.1% in the relative out-of-sample R-squared over CAPM.

The rest of the paper is outlined as follows. We have a brief introduction about the method in

section 1.1 and a comprehensive comparison with the related literature in section 1.2. Section 2 adds

an introduction to the neural network and how we interpret Fama-French models in deep learning.

The details of the Deep Factor Alpha algorithm are discussed in section 3. Section 4 illustrates the

empirical study design and the findings for asset pricing testing. Section 5 discusses the automated

generation of deep factors and the future application in empirical asset pricing.

1.1 Deep Factor Methodology

In this paper, we employ the classical time series regression approach by regressing excess

asset returns on the returns of the generated deep factors Ft, and a benchmark model with tradable

3

factors Gt, such as CAPM or Fama-French models.

Ri,t = αi + βᵀi Ft + γᵀi Gt + εi,t (1)

Here, Ri,t is the excess return for the testing asset. Ft are deep factors comprising long-short spread

factors generated by sorting individual firm returns on the output characteristics from a deep neural

network. In our unified framework, Ft are generated while controllingGt within deep learning. The

tradable alphas, cross-sectional pricing errors, are constructed as

α̂i =
1

T

T∑
t=1

(
Ri,t − β̂ᵀi Ft − γ̂

ᵀ
i Gt

)
. (2)

Our optimization objective is to minimize the least squares, time series variation across N assets,

with an additional penalty on the average pricing errors.

L =
1

NT

T∑
t=1

N∑
i=1

(
Ri,t − αi − βᵀi Ft − γ

ᵀ
i Gt

)2
+ λ

1

N

N∑
i=1

α2
i . (3)

The choice of the penalty term mimics the pricing error test2 in Gibbons, Ross, and Shanken (1989)

and measures the average pricing errors. It is derived from the economic constraint from the beta

pricing model: the excess asset return can be explained by the risk premia of factors.

E(Ri,t) = αi + βiE(Ft) + γiE(Gt), (4)

where αi = 0 for every testing asset i.

By combining the time series model (1) and cross-sectional model (4), we solve an optimiza-

tion problem: how to generate long-short spread factors to minimizing the average pricing errors.

Our loss function design is similar to the RP-PCA of Lettau and Pelger (2018), who provide a regu-

larized estimation with a penalty accounting for cross-sectional variation of average returns. Their

regularized PCA is designed to maximize the time series variation while penalizing PCs with small

risk premium, while ours uses the time series variation to determine the factor loading and train

2It is possible to replace
∑N
i=1 α

2
i with the weighted average αᵀΣ−1

α α at the expense of estimating the additional Σα.

4

the latent factors in the beta model. Another difference between two approaches is the trade-off

between using statistical factors and characteristic-based factors.

1.2 Related Literature

The most closely related literature is the statistical factor model, such as PCA. The original PCA

of Chamberlain and Rothschild (1983) and Connor and Korajczyk (1986, 1988) estimates factors that

can best explain the time series variation for a large cross-section of stocks. The recent IPCA of Kelly

et al. (2018) uses additional information, namely, firm characteristics, as instruments to estimate

PCs and further allows time-varying factor loadings. Lettau and Pelger (2018) derive the statistical

properties of RP-PCA that helps to identify factors with small time series variance but useful to the

cross-sectional variation. Kozak, Nagel, and Santosh (2018) show PCA of anomaly portfolios works

as well as popular reduced-form factor models in explaining the cross section of average returns on

anomaly portfolios.

Our method figures out the best-transformed characteristics for security sorting by marrying

the time series and cross-sectional variation. Using a purely statistical factor approach results in a

few shortcomings. First, PCA uses either individual firms or portfolios, whereas our deep factors

are generated using individual firm returns to fit a different set of portfolios. We use individual

firms as train assets and Fama-French 25 portfolios as validation assets. Second, PCs generally

perform poorly out of sample, whereas deep factors are sorted portfolios that behave similarly to

Fama-French factors. Third, PCA lacks the flexibility to estimate latent factors by controlling for a

benchmark model, such as CAPM or Fama-French factors. Our method does not create an entirely

new factor model but adds additional deep factors on a benchmark model. Fourth, PCA relies on a

balanced data structure, where security sorting on characteristics does not require.

The second related area is forecasting stock return via machine learning. Kozak, Nagel, and

Santosh (2017) use a shrinkage estimator on the SDF coefficients for characteristic-based factors with

economic interpretation. Freyberger, Neuhierl, and Weber (2017) apply the adaptive group LASSO

for firm characteristics selection and provide evidence of nonlinearity, whereas Light, Maslov, and

Rytchkov (2017) uses partial least squares (PLS) to aggregate information of firm characteristics.

Chinco, Clark-Joseph, and Ye (2017) forecast one-minute-ahead returns using the entire cross sec-

5

tion of lagged returns by LASSO and find news about fundamentals can be useful predictors. For

comprehensive empirical investigation of forecasting performance for multiple machine learning

algorithms, see Gu, Kelly, and Xiu (2018).

Our method develops an asset pricing model instead of a pure return forecasting machine.

First, our goal is not to test or select characteristics for forecasting. We find the best combination

and transformation of all characteristics through a multi-layer neural network, rather than throwing

away most of them. Second, the empirical literature lacks a clear out-of-sample design for machine

learning, because right-hand-side factors are portfolios constructed by (left-hand-side) individual

firm returns. We provide a typical machine learning train-validation-test design from factor creation

to return forecasting. Third, deep learning is widespread in the investment industry but still lacks

the interpretation as a black box. Our deep factors, the hidden neurons in the deep neural network,

are tradable strategies with significant alphas.

Second, directly using dynamic firm characteristics in return forecasting is not easy. Some

firms do not have historical data, and some disappear in the future. The firm characteristics data

can easily go missing at random. One major advantage of using factors is that security sorting is

not restricted to the unbalanced panel data structure. Kozak et al. (2017) sort securities on nonlinear

and interaction forms of characteristics for factor selection. Other common practices include using

a small set of firms or imputation for missing data. Recently, Freyberger et al. (2017) and Kelly

et al. (2018) have applied different machine learning methods that employ period-by-period cross-

sectional regressions similar to those in Fama and MacBeth (1973).

Another approach is the use of incremental information of characteristics to deal with the

high-dimensionality challenge in Cochrane (2011). Harvey et al. (2016) show the multiple test-

ing issues in the zoo of factors produced in the last 40 years. Feng, Giglio, and Xiu (2017) provide

a high-dimensional inference method to tame the factor zoo and find a small number of factors

with incremental contribution recursively. Kelly et al. (2018) evaluate the contribution of individual

characteristics under a nested model comparison by R-squared reduction.

Our framework provides an evaluation of the incremental contribution of a set of characteris-

tics beyond a benchmark factor model. The deep factors can be generated by controlling for a bench-

mark model within a deep learning architecture. Unlike maximizing the time series predictability,

6

adding a factor does not necessarily decrease the in-sample cross-sectional average pricing errors.

We can test the out-of-sample improvement using the test assets or future returns of validation as-

sets over the benchmark. We can dissect the existing anomalies with a deep factor model. Finally,

the deep factors are trading strategies and can be tested if an anomaly over the benchmark exists.

2 Deep Factor Alpha

In this section,we have a brief introduction to deep learning in section 2.1 and illustrate how

to implement the Fama-French type models within the deep neural network in section 2.2.

2.1 Deep Learning

Artificial Neural Network is a pattern recognition machine learning method to use a high-

dimensional data X to predict Y 3. The theoretical root of the prediction power for deep learning

is established in Kolmogorov (1963). LeCun, Bengio, and Hinton (2015) and Goodfellow, Bengio,

Courville, and Bengio (2016) provide comprehensive summaries about how the neural network

develops to the modern deep learning, which attracts tremendous attention in recent years for big

data and artificial intelligence. The recent development of deep learning in finance and statistics

include Heaton, Polson, and Witte (2017) and Polson and Sokolov (2017). The former introduces

deep learning decision models for problems in financial prediction and classification, while the

latter provides a Bayesian interpretation to the neural network.

In a simple L-layer NN, using X [l−1] from the previous layer, the l-th layer performs a com-

position of an affine transformation AX + b and a nonlinear activation f(·). Therefore, the network

feeds forward like a pipeline and applies operations sequentially

X [l] = f [l]
(
A[l]X [l−1] + b[l]

)
for l = 1, 2, ..., L.

Here, X [0] = X is the input layer, X [L] is the output layer as a predictor, and those intermediary X [l]

are hidden layers. Commonly used activation functions f(·) include sigmoidal 1/(1 + exp(−x)),

cosh(x), tanh(x) and rectified linear unit (ReLU): max{x, 0}.
3Early studies of artificial neural network in computer science and economics include Gallant and White (1988), White

(1988), Hornik, Stinchcombe, and White (1989), Poggio and Girosi (1990) and Kuan and White (1994)

7

A layer X ∈ RK is represented by K neurons with activation functions performed on them. A

weight matrix A is represented by a bunch of edges (or arrows) between 2 layers. A bias vector b

can be viewed as neurons unconnected with previous layers. Figure (1), a neural network diagram,

shows a neural network with 3 hidden layers of size 3, 5 and 4 respectively. There are 8 predictors

in the input layer and a scalar Y in the output layer. Each blue circle denotes a neuron and each

edge linking 2 neurons is an element of weight matrix A, where red edges are positive weights and

green ones are negative. The edge width and opacity are proportional to absolute values.

Figure 1: A Neural Network Diagram

As L, the depth of network increases, we get a more complicated composition of functions

(fL ◦ fL−1 ◦ fL−2 ◦ ... ◦ f1) (X), where fl(x) := f [l]
(
A[l]x+ b[l]

)

A neural network aims to learn patterns in X to forecast Y . The search of patterns is supervised by

a target response Y . Suppose the multi-layer architecture and f(·) are given, the choice of model

parameters A and b should leads to a good approximation of Y = Y (X). The performance is then

evaluated by a loss function L(Ŷ , Y) where Ŷ = (fL ◦ ... ◦ f1) (X). For example, squared error loss

L(Ŷ , Y) := ‖Y − Ŷ ‖22 is used in regression problems. Like most other machine learning methods,

the model training of deep learning involves solving an optimization problem. Given N training

8

data points {Xi, Yi}Ni=1, we find the layer architecture and model parameters to minimize

L
(
Ŷ (X), Y

)
=

1

N

N∑
i=1

L
(
Ŷ (Xi), Yi

)
.

2.2 Fama-French model in Deep Learning

Figure 2: Fama-French 5-factor model as a neural network

Fama and French (2015, 2016) continue to add RMW and CMW to form a five-factor model,

which carry high risk premia and are shown to dissect many anomalies beyond FF3. However,

in the existing zoo of factors, there are similar measures to size, book-to-market, profitability, and

investment. The economic theory is silent about how to calculate the firm characteristics with ex-

tensive fundamental information. For example, there are multiple momentum factors: long-term

reversal (13-60), short-term reversal (1-1), the Carhart Momentum (2-12), and so forth. All of the

similar momentum characteristics are a sum of past firm returns. The behavioral economics or sys-

tematic risk does not tell which past months and how many to use. Sorting securities on calculated

characteristics might be a trial-and-error experiment to proxy for the common risk factor.

In a deep learning perspective, Figure (2) shows how to build Fama-French factors from the

firm characteristics to return forecasts. Researchers find out the best formula for some firm char-

acteristics used for security sorting. At the beginning of the period, they sort individual firms on

9

their lag characteristics to determine the top and bottom value-weighted portfolios. If a firm does

not exist or has missing characteristics in some periods, it is not included in the security sorting for

those periods. Therefore, security sorting, the quantile activation function, works perfectly for the

imbalanced data structure with missing values for the nature of firm dynamics.

Researchers construct the factors with long-short portfolio spreads by selecting those firms

rank top and bottom in the sorting. The factors are expected to produce positive average returns

or risk premia. If the factors have explanation power to the cross-sectional returns at the same

period, it could be a proxy for a common risk factor. The potential multi-layer transformations

and combinations of firm characteristics happen before the green circles. The next activation for

security sorting is the quantile function in the blue circles. Finally, we create the factor model with

other factors, such as the excess market return.

In this paper, we argue the approach that researchers have been using to create characteristic-

based factors for decades is part of a deep neural network. With a correct loss function for the su-

pervised learning, it is possible to exploit the modern computation to automate the best calculation

of firm characteristics. The gain is to unified the factor creation from the characteristic calculation,

to security sorting, to an augmented factor model with a benchmark, to minimizing the pricing

errors. The greedy algorithm of a deep neural network can be useful to create such characteristics

useful to dissect the pricing errors in the loss function.

3 Model Training

In this section, we discuss the details of model training: including the multi-layer characteris-

tics transformation, the factor construction, and the unified model to minimize the loss function.

3.1 Model Notation

With traditional neural network as building blocks, we are now ready to design the architec-

ture for our deep factor alpha. Our deep learning framework mainly consists of 2 parts. The first

part takes lagged firm characteristics as input and feeds them into a deep multi-layer network. It

simultaneously performs dimension reduction and nonlinearity extraction. The flexibility of deep

network allows us to search any possible pattern in firm characteristic space and summarize them

10

in the deep characteristics as output. The generation of deep characteristics is then supervised by

the second part, which implements augmented Fama-French factor model. The second part uses

deep characteristics, and individual firm returns to construct deep factors and combine them with

the inputted ones, i.e., existing benchmark factors. The augmented factor set is used to price target

assets via a linear model. Specifically, the construction of deep factors is via bivariate sorting, and

the final step is illustrated in Equation 1. In the end, the whole model training procedure aims to

improve deep factors and minimize pricing errors defined in Equation 3.

For our deep learning framework, a typical training observation indexed by time t includes 4

types of data:

{Ri,t}Ni=1 , as excess returns of N target assests

{rj,t}Mj=1 , as excess returns of M individual firms

{Zk,j,t−1 : 1 ≤ k ≤ K}Mj=1 , as K lagged characteristics of M firm

{Gd,t}Dd=1 , as D benchmark factors

(5)

For notational simplicity we write them in matrix form {Rt, rt, Zt−1, Gt}. Here Rt is a N × 1 vector;

rt is a M × 1 vector; Zt−1 is a K ×M matrix; Gt is a D × 1 vector.

3.2 Deep Characteristics

In this section we show how to design a L-layer deep network, of which the purpose is to

generate P deep characteristics. We drop for now the subscript t, bearing in mind that the input Z

at time t denotes the firm characteristics in time t− 1. The architecture is as follows:

X
[l]
·,j = f [l]

(
A[l]X

[l−1]
·,j + b[l]

)
, for l = 1, 2, 3, ..., L and j = 1, 2, ...,M (6)

Z := X [0]. (7)

where X [l]
·,j is the j-th column of a Kl × M matrix X [l]. We set K0 = K and KL = P . f [l] is

the univariate activation function in the l-th layer, broadcasting to every element of a matrix. The

11

parameters to be trained in this part are deep learning weights A’s and biases b’s, namely

{
(A[l], b[l]) : A[l] ∈ RKl×Kl−1 , b[l] ∈ RKl

}L
l=1

.

We point out that here the transformations are made column by column. With a little abuse of

notation, we will rewrite the architecture as

Y := X [L], (8)

X [l] = f [l]
(
A[l]X [l−1] + b[l]

)
, for l = 1, 2, 3, ..., L (9)

Z := X [0]. (10)

where the output Y is our P ×M deep characteristics.

Unlike standard feed-forward neural network, the l-th layer in our architecture is a neural

matrix X [l]. Each row of X [l] is a 1×M vector representing the kl-th “intermediate characteristics”

for M firms, kl = 1, 2, ...,Kl. We explicitly make all the columns (firms) share the same parameters

A[l] and b[l], whose dimensions are independent of M . We use Kl to denote the dimension of l-th

layer since the number of columns are fixed as M for all X [l]’s. Figure (3) illustrates how our deep

learning network forwards by showing an example architecture from (l − 1)-th layer to (l + 1)-th

layer, where Kl−1 = Kl+1 = 2 and Kl = 4. The Fama-French approach simply drops all hidden

layers and uses Y := Z for bivariate sorting in the latter part. In contrast, Z in our deep network

goes through multiple layers of affine transformations and nonlinear activations, and ends up with

a low dimensional deep characteristics Y . Here the layer sizes {Kl}Ll=1 and the number of layers L

are tuning parameters.

3.3 Deep Factors

With a P × 1 vector generated from the first part, Y , our deep framework continues with the

construction of deep factors via bivariate sorting and then an augmented factor model for asset

12

X^[l-1]

X^[l]
X^[l+1]

M

A^[l]

A^[l]

A^[l+1]

A^[l+1]….
..

….
..

….
..

Figure 3: Deep network of X [l−1] → X [l] → X [l+1]. Kl−1 = Kl+1 = 2, Kl = 4.

pricing. The architecture after L-th layer is as follows:

R̂ := X [L+4] = h[4]
(
X [L+3], G

)
(11)

F := X [L+3] = h[3]
(
X [L+2], r

)
(12)

W := X [L+2] = h[2]
(
X [L+1], V

)
(13)

U := X [L+1] = h[1]
(
X [L]

)
(14)

Here h[1], h[2], h[3], h[4] are no longer univariate activation functions. Instead, each of them is an op-

erator specially defined in order to conduct important transformations. Also note that h[2], h[3], h[4]

all take 2 arguments, one from the previous layer and another from additional input. V is a M × 1

vector of lagged market equity value.

We now describe these 4 operators in details. h[4] : RP × RD → RN is an affine transformation

of its 2 arguments, and the parameters are denoted as α ∈ RN , β ∈ RN×P and γ ∈ RN×D.

h[4](F,G) = α+ [β γ]

F
G

 . (15)

13

Therefore h[4] is related to the augmented factor model.

h[3] : RP×M × RM → RP defines how we construct deep factors as tradable value-weighted

portfolios. Once given the portfolio weights W and individual firm returns r, it is simply a matrix

production

h[3](W, r) = Wr. (16)

The key procedures are h[2] and h[1]. They essentially performs bivariate sorting, portfolio se-

lection and weight normalization. h[1] is also implicitly incorporated in h[2], as a preliminary step.

Regarding h[2] : RM ×RM → RM , it defines how we combine the sorting results of deep characteris-

tics with market equity to produce long-short portfolio weights. When its first argument is a matrix

of P rows, it performs P separated operations (i.e. row by row) with the same second argument and

aggregates the results in a matrix of the same size. Suppose the arguments of h[2] are 2 vectors, x1

and V . We will see later that h[2] first combines x1 and h[1](V) to generate 4 indicator vectors (each

element is either 0 or 1). These 4 vectors actually indicate the memberships of individual firms in 4

bivariate-sorted portfolios. Then h[2] outputs the “difference in averages” of the 4 bivariate-sorted

weights, using V as a vector of candidate weights. Finally the generated F are long-short portfolios.

3.3.1 Bivariate Sorting

Let’s first define h[1] : RM → RM , which is the univariate sorting operating on a vector. Again,

when its argument is a matrix, h[1] performs univariate sorting row by row and aggregates the

outputs in a matrix.

Let y be a M × 1 vector representing some deep characteristic, i.e. a row of Y , or the market

equity value V . We define h[1](y) as

h[1](y) =

1 {y1 ≥ qν(y)}
...

1 {yj ≥ qν(y)}
...

1 {yM ≥ qν(y)}

+

1 {y1 ≥ qτ (y)}
...

1 {yj ≥ qτ (y)}
...

1 {yM ≥ qτ (y)}

− 1M (17)

14

where 1 is the indicator function and 1M is a M × 1 vector of ones. qν and qτ are lower ν− and τ−

quantiles respectively, with ν + τ = 1 and 0 < ν ≤ τ . For example, we choose ν = 0.2, τ = 0.8 for

deep characteristics Y and ν = τ = 0.5 for market equity value V .

It is clear that each coordinate of h[1](y) takes value from {−1, 0, 1}, depending on the rank of

y1, y2, ...yM . In other words, assume y(1) ≤ y(2) ≤ ... ≤ y(M), then

[
h[1](y)

]
(j)

=

−1 if j

M < ν

0 if ν ≤ j
M < τ

1 if j
M ≥ τ

(18)

Finally, h[2](x1, V) combines the sorting results of deep characteristics with the information of

market equity. Define x2 := h[1](V). Then those 4 indicator vectors mentioned above are:

∆Bt = (x1)+ � (x2)+

∆Bb = (x1)− � (x2)+

∆St = (x1)+ � (x2)−

∆Sb = (x1)− � (x2)−

(19)

where (x)+ := max{x, 0} and (x)− := max{−x, 0} and “�” denotes the element-wise production.

Then

h[2](x1, V) =
1

2

[
∆Bt � V

(∆Bt � V)′1M
+

∆St � V
(∆St � V)′1M

]
− 1

2

[
∆Bb � V

(∆Bb � V)′1M
+

∆st � V
(∆sb � V)′1M

]
(20)

where the portfolio weights ∆� V are normalized by 1/(∆� V)′1M so that the sum h[2]
′
1M = 0.

To better understand the procedure of h[1] and h[2], first imagine dividing the firm universe into

3 parts using cut-off values qν(y) and qτ (y). This division is with respect to some deep characteristic

y and x1 = h[1](y), each coordinate representing a firm. The proportions of firms in each part are ν,

τ − ν and 1 − τ , respectively. We set x1 = 1 for top firms, x1 = 0 for middle firms and x1 = −1 for

bottom firms. Second, divide the firm universe into 2 halves using the median firm market equity

value. With x2 = h[1](V), x2 = 1 if a firm is big and x2 = −1 if it’s small. ∆j = 1 if and only if the

15

j-th firm is selected in the corresponding portfolio. If we replace V with 1M , then h[2] gives weights

for equally-weighted portfolios. Figure (4) illustrates our bivariate sorting.

Figure 4: Bivariate Sorted Portfolios

3.4 Minimize Mispricing Alphas

We summarize the above deep learning framework in Table (1) and Figure (5):

Dimension Output Additional Input Operation Parameters

Asset return N × 1 R̂ G α+ βF + γG (α, β, γ)
Deep factor P × 1 F r Wr

Portfolio weight P ×M W V h[2] (U, V)

Sorting P ×M U h[1] (Y)

Deep characteristic KL ×M Y f [L]
(
A[L]X [L−1] + b[L]

)
(A[L], b[L])

...
...

...
...

Kl ×M X [l] f [l]
(
A[l]X [l−1] + b[l]

)
(A[l], b[l])

...
...

...
...

Firm characteristic K ×M X [0] Z X [0] = Z

Table 1: Deep factor alpha architecture

Fixing L, {Kl}Ll=1 and (ν, τ), our loss function is the mean squared prediction error regularized

16

Z
Y U

V

W

r

F
G

R

K

M

K_l
P

N
P

D

M

Deep Characteristics Bivariate Sorting Deep Factor Alpha

Figure 5: Deep factor alpha architecture

by mean squared mispricing error

L(A, b, α, β, γ) :=
1

NT

T∑
t=1

N∑
i=1

(
Rit − R̂it

)2
+ λ

1

N

N∑
i=1

α2
i (21)

where

R̂it = αi + βᵀi Ft + γᵀi Gt

and λ controls the amount of regularization. β = [β1, β2, ..., βN]ᵀ , γ = [γ1, γ2, ..., γN]ᵀ. To train the

deep network is then equivalent to get a joint estimation of (A, b) :=
{
A[l], b[l]

}L
l=1

and (α, β, γ).

We use the notation FA,bt to indicate the dependence of Ft on the parameters. The corresponding

estimates are

(Â, b̂, α̂, β̂, γ̂) = arg min
A,b

{
1

NT

T∑
t=1

N∑
i=1

(
Rit − R̂it

)2
+ λ

1

N

N∑
i=1

α2
i

}

Dropout is used to improve the estimation. Here the input space of X [l−1] is replaced by D�X [l−1]

17

for l = 1, 2, ..., L, where D ∼ Bernoulli(p) is a matrix of randomly assigned Bernoulli variables.

This acts as a ridge penalty. See Hinton and Salakhutdinov (2006), Polson and Sokolov (2017). As

opposed to sparsity, the network architecture averages small models using dropout.

Although being highly nonlinear and non-convex, the structure of deep learning model makes

its loss function differentiable with respect to its parameters. The first-order derivative information

is directly available by carefully applying backward chain rule. TensorFlow library performs au-

tomatic derivative calculation for practitioners. This allows us to train the model using stochastic

gradient descent (SGD), see Robbins and Monro (1951) and Kiefer and Wolfowitz (1952). Let the

superscript (t) to denote the t-th iterate, SGD updates the parameters by

Â(t+1)

b̂(t+1)

α̂(t+1)

β̂(t+1)

γ̂(t+1)

←−

Â(t)

b̂(t)

α̂(t)

β̂(t)

γ̂(t)

− η(t+1)∇L(t) (22)

until convergence, where η is the step size and the gradient is evaluated at (Â(t), b̂(t), α̂(t), β̂(t), γ̂(t)).

At each iterate, the loss L(t) only involves a random subset of data, B ⊂ {1, 2, ..., T}, called mini-

batch,

L(t)(A, b, α, β, γ) =
1

N |B|
∑
t∈B

N∑
i=1

(
Rit − R̂it

)2
+
λ

N

N∑
i=1

α2
i (23)

where |B| � T .

3.5 Model Selection

We may consider augmenting our deep characteristics Y by the raw firm characteristics Z,

namely replacing Y with Ỹ = [Y,Z] for factor construction. The resulting P + K deep factors are

then selected by adaptive group lasso method. The penalty corresponds to the j-th factor is

λj‖β·,j‖2 ∝
1

|aj |
‖β·,j‖2

18

where j = 1, 2, ...P+K and aj is the intercept of the regression model Fj,t ∼ Gt where Fj,t is the j-th

element of Ft. When |aj | → 0, the constructed Fj is useless because it’s nearly a linear combination

of the existing G. Then the parameter λj ∝ 1
|aj | → ∞ and we expect β·,j to be penalized to 0. This

leads to a sparse factor model where the number of selected factors is less than K + P .

The adaptive group lasso method along with the multivariate regression Ft ∼ Gt can be easily

incorporated into SGD. We modify the loss function as

L̃ := L+
λ2

(K + P)T

T∑
t=1

K+P∑
j=1

(
Fj,t − aj − cᵀjGt

)2
+

λ3
K + P

K+P∑
j=1

1

|aj |
‖β·,j‖2. (24)

4 Empirical Findings

4.1 Data Information

The characteristics availability is from 1975 January to 2017 December. To calculate some char-

acteristics, we use past data before 1975. We only include stocks for companies listed on three main

exchanges in the United States: NYSE, AMEX, or NASDAQ. We use those observations for firms

with a CRSP share code of 10 or 11. We only include observations for firms listed more than one

year. We exclude observations with negative book equity or negative lag market equity.

For the zoo of characteristics, we use 56 continuous variables surveyed in Green et al. (2017),

which include size, book-to-market, profitability, and investment. The description of these char-

acteristics are listed in Table (3) in the appendix. To evaluate the quality of the characteristics, we

follow Fama and French (1993) and create the monthly bivariate-sorted factors using the top 20%

and bottom 20% of firms. Using all 43 years of data, there are 42, 40, and 34 out of 56 factors tested

with significant alphas. During the 30-year training period 1975-2004, there are 42, 40, and 30 of

them tested with significant alpha respectively.

4.2 Model Selection and Forecasting

The unique feature of factor model is using portfolios to “explain” portfolios. To perform a

valid machine learning forecast, we provide a train-validation-test design to build the out-of-sample

forecasting in Figure (6). First, we use individual firm returns as train assets to create long-short

19

Figure 6: Train-Validation-Test asset design

spread factors. Second, we use 25 size and book-to-market sorted portfolios as validation assets

to calculate the training loss. Within deep learning, we run a regression using 25 portfolios on the

augmented factor model. Third, we use another set of portfolios (25 size and profitability, 25 size

and investment, and 30 industries) as test asset to perform the augmented factor model selection.

Data-driven model selection is an essential issue in asset pricing. We apply such an out-of-

sample validation design to determine the number of deep factors, the number of layers for the

neural network, and the tuning parameter λ that balances the time series and cross-sectional vari-

ation. For time series forecast of validation assets, using the test assets to determine the model is a

pure out-of-sample approach. For cross-sectional evaluation of test assets, using validation assets

to assess the factor creation is also a pure out-of-sample approach.

In Table (2), we separate the train and test periods as 1974-2004 and 2005-2017. We also provide

a resampling design to address the time-varying model data reality. For every four months, we

randomly label three in the train data and one in the test data. We use the train data to train and

select the deep factor model, then report its out-of-sample improvements on the test data. The

estimated factor loadings are fixed in forecasting the future cross-section. The below measures are

used to report the empirical results.

20

Table 2: Out-of-sample Forecasting

RMSE-train R2-train RMSE-test R2-test

Past-Future
CAPM + DF(L=3 P=4) 0.360% 27.99% 0.201% 12.47%
FF3 + DF(L=4 P=2) 0.171% 83.82% 0.181% 28.78%
FF5 + DF(L=3 P=2) 0.173% 83.36% 0.156% 47.50%
CAPM 0.425% 0.00% 0.215% 0.00%
FF(3) 0.170% 83.92% 0.182% 27.77%
FF(5) 0.179% 82.23% 0.159% 45.37%

Resampling
CAPM + DF(L=2 P=7) 0.269% 7.06% 0.427% 17.39%
FF3 + DF(L=3 P=6) 0.151% 70.67% 0.205% 81.00%
FF5 + DF(L=2 P=1) 0.130% 78.29% 0.192% 83.25%
CAPM 0.279% 0.00% 0.470% 0.00%
FF(3) 0.153% 69.90% 0.216% 78.88%
FF(5) 0.133% 77.41% 0.208% 80.47%

• RMSE =
√

1
N

∑N
i=1 α̂

2
i is the standard deviation for the pricing error.

• R2 = 1− RMSE2
M1
/RMSE2

M2
is the relative performance of Model 1 over Model 2.

Adding more factors to a model does not necessarily decrease RMSE or increase R-squared. FF5

has a slightly lower in-sample R-squared but a significantly higher out-of-sample one than FF3.

The reported R-squared in Table (2) are relative performance over CAPM. Therefore, the R-squared

values are not comparable between the train and test data.

Finally, we find a substantial improvement for the CAPM-DL model, which includes four deep

factors from a 3-layer neural network. The gain for FF3-DL and FF5-DL models are all positive with

more than 1% improvement, both of which are added two more deep factors. In the resampling de-

sign, we also see substantial improvement for deep factor model over the benchmark. The CAPM-

DL has 17% improvement, while both FF3-DL and FF5-DL have more than 2% improvement.

5 Conclusion

In this paper, we propose a deep factor alpha model to establish a deep learning representation

for the characteristics-based factor model to answer an asset pricing problem: dissecting anoma-

21

lies. Our procedure builds an underappreciated connection between security sorting on calculated

characteristics to a quantile activation function within a unified deep neural network. The greedy

algorithm helps to search for the best transformation of firm fundamentals for security sorting by

controlling for a benchmark model. The main difference between our approach and various statis-

tical factor methods is that ours does not create an entirely new factor model but adds additional

deep factors on a benchmark model.

The recent computation breakthrough of artificial intelligence has enabled numerous potential

automatic data-driven applications to many areas, including finance and investment. However,

asset pricing is such a field that has a low signal-to-noise ratio and a stable pattern of non-stationary.

A simple application of deep learning does not exist with the short-history of financial data and the

imbalanced data structure. In this paper, we show encouraging results about the development of

deep learning in asset pricing research. The key is to adapt the recent deep learning methods within

those workhorse empirical models in this field.

22

References

Chamberlain, G. and M. Rothschild (1983). Arbitrage, factor structure, and mean-variance analysis

on large asset markets. Econometrica: Journal of the Econometric Society, 1281–1304.

Chinco, A. M., A. D. Clark-Joseph, and M. Ye (2017). Sparse signals in the cross-section of returns.

Technical report, National Bureau of Economic Research.

Cochrane, J. H. (2011). Presidential address: Discount rates. The Journal of Finance 66(4), 1047–1108.

Connor, G. and R. A. Korajczyk (1986). Performance measurement with the arbitrage pricing theory:

A new framework for analysis. Journal of Financial Economics 15(3), 373–394.

Connor, G. and R. A. Korajczyk (1988). Risk and return in an equilibrium apt: Application of a new

test methodology. Journal of Financial Economics 21(2), 255–289.

Fama, E. F. and K. R. French (1992). The cross-section of expected stock returns. The Journal of

Finance 47(2), 427–465.

Fama, E. F. and K. R. French (1993). Common risk factors in the returns on stocks and bonds. Journal

of Financial Economics 33(1), 3–56.

Fama, E. F. and K. R. French (1996). Multifactor explanations of asset pricing anomalies. The journal

of finance 51(1), 55–84.

Fama, E. F. and K. R. French (2015). A five-factor asset pricing model. Journal of Financial Eco-

nomics 116(1), 1 – 22.

Fama, E. F. and K. R. French (2016). Dissecting anomalies with a five-factor model. The Review of

Financial Studies 29(1), 69–103.

Fama, E. F. and J. D. MacBeth (1973). Risk, return, and equilibrium: Empirical tests. Journal of

Political Economy 81(3), 607–636.

Feng, G., S. Giglio, and D. Xiu (2017). Taming the factor zoo. Technical report, City University of

Hong Kong.

23

Freyberger, J., A. Neuhierl, and M. Weber (2017). Dissecting characteristics nonparametrically. Tech-

nical report, National Bureau of Economic Research.

Gallant, A. R. and H. White (1988). A unified theory of estimation and inference for nonlinear dynamic

models. Blackwell.

Gibbons, M. R., S. A. Ross, and J. Shanken (1989). A test of the efficiency of a given portfolio.

Econometrica: Journal of the Econometric Society, 1121–1152.

Goodfellow, I., Y. Bengio, A. Courville, and Y. Bengio (2016). Deep learning, Volume 1. MIT press

Cambridge.

Green, J., J. R. Hand, and X. F. Zhang (2017). The characteristics that provide independent informa-

tion about average us monthly stock returns. The Review of Financial Studies 30(12), 4389–4436.

Gu, S., B. T. Kelly, and D. Xiu (2018). Empirical asset pricing via machine learning. Technical report,

The University of Chicago.

Harvey, C. R., Y. Liu, and H. Zhu (2016). ... and the cross-section of expected returns. The Review of

Financial Studies 29(1), 5–68.

Heaton, J., N. Polson, and J. H. Witte (2017). Deep learning for finance: deep portfolios. Applied

Stochastic Models in Business and Industry 33(1), 3–12.

Hinton, G. E. and R. R. Salakhutdinov (2006). Reducing the dimensionality of data with neural

networks. science 313(5786), 504–507.

Hornik, K., M. Stinchcombe, and H. White (1989). Multilayer feedforward networks are universal

approximators. Neural Networks 2(5), 359–366.

Hou, K., C. Xue, and L. Zhang (2017). Replicating anomalies. Technical report, National Bureau of

Economic Research.

Kelly, B., S. Pruitt, and Y. Su (2018). Characteristics are covariances: A unified model of risk and

return. Technical report, National Bureau of Economic Research.

24

Kiefer, J. and J. Wolfowitz (1952). Stochastic estimation of the maximum of a regression function.

The Annals of Mathematical Statistics, 462–466.

Kolmogorov, A. N. (1963). On the representation of continuous functions of many variables by

superposition of continuous functions of one variable and addition. American Mathematical Society

Translation 28(2), 55–59.

Kozak, S., S. Nagel, and S. Santosh (2017). Shrinking the cross section. Technical report, University

of Michigan.

Kozak, S., S. Nagel, and S. Santosh (2018). Interpreting factor models. The Journal of Finance 73(3),

1183–1223.

Kuan, C.-M. and H. White (1994). Artificial neural networks: an econometric perspective. Econo-

metric Reviews 13(1), 1–91.

LeCun, Y., Y. Bengio, and G. Hinton (2015). Deep learning. Nature 521(7553), 436.

Lettau, M. and M. Pelger (2018). Estimating latent asset-pricing factors. Technical report, National

Bureau of Economic Research.

Light, N., D. Maslov, and O. Rytchkov (2017). Aggregation of information about the cross section

of stock returns: A latent variable approach. The Review of Financial Studies 30(4), 1339–1381.

Poggio, T. and F. Girosi (1990). Networks for approximation and learning. Proceedings of the

IEEE 78(9), 1481–1497.

Polson, N. and V. Sokolov (2017). Deep learning: A bayesian perspective. Bayesian Analysis 12(4),

1275–1304.

Robbins, H. and S. Monro (1951). A stochastic approximation method. The Annals of Mathematical

Statistics, 400–407.

White, H. (1988). Economic prediction using neural networks: The case of ibm daily stock returns.

Technical report, University of California, San Diego.

25

6 Appendix

Table 3: Characteristics and Anomaly Summary

Variable Chacteristics Description Average Return Sharpe Ratio

mve0 Market equity 0.23% 20.29%
beta Market Beta 0.06% 2.75%
chmom Change in 6-month momentum 0.02% 2.04%
idiovol Idiosyncratic return volatility 0.32% 15.83%
indmom Industry momentum 0.35% 28.81%
mom1m 1-month momentum 0.17% 14.98%
mom6m 6-month momentum 0.66% 45.94%
mom12m 12-month momentum 0.83% 55.35%
pricedelay Price delay 0.10% 19.61%
absacc Absolute accruals 0.11% 14.99%
acc Working capital accruals 0.31% 52.89%
age years since first Compustat coverage 0.22% 22.16%
agr Asset growth 0.51% 73.60%
bm Book-to-market 0.49% 44.22%
bm ia Industry-adjusted book to market 0.27% 49.51%
cashdebt Cash flow to debt 0.27% 32.20%
cashpr Cash productivity 0.41% 46.23%
cfp Cash flow to price ratio 0.51% 42.55%
cfp ia Industry-adjusted cash flow to price ratio 0.33% 65.81%
chcsho Change in shares outstanding 0.47% 70.23%
chempia Industry-adjusted change in employees 0.18% 42.94%
chinv Change in inventory 0.31% 60.21%
chpmia Industry-adjusted change in profit margin 0.01% 1.81%
currat Current ratio 0.08% 7.52%
depr Depreciation / PP&E 0.22% 23.08%
dy Dividend to price 0.00% 0.16%
egr Growth in common shareholder equity 0.37% 55.41%
ep Earnings to price 0.56% 45.12%
gma Gross profitability 0.23% 28.70%
herf Industry Concentration 0.02% 2.35%

The characteristics are calculated based on the SAS program of Green et al. (2017). The factors are
monthly sorted long-short spreads using the data from 1975 to 2017.

26

Variable Chacteristics Description Average Return Sharpe Ratio

hire Employee growth rate 0.31% 44.80%
invest Capital expenditures and inventory 0.49% 73.90%
lev Leverage 0.39% 28.85%
lgr Growth in long-term debt 0.34% 66.79%
mve ia Industry-adjusted size 0.24% 22.26%
operprof Operating profitability 0.38% 39.90%
pchcapx ia Industry adjusted % change in capital expenditures 0.15% 31.60%
pchcurrat % change in current ratio 0.01% 2.68%
pchdepr % change in depreciation 0.15% 44.44%
pchgm pchsale % change in gross margin - % change in sales 0.18% 40.74%
pchquick % change in quick ratio 0.03% 10.63%
pchsale pchrect % change in sales - % change in A/R 0.09% 26.38%
pctacc Percent accruals 0.24% 50.57%
ps Financial statements score 0.21% 47.56%
quick Quick ratio 0.09% 8.35%
roic Return on invested capital 0.42% 43.02%
salecash Sales to cash 0.20% 20.48%
saleinv Sales to inventory 0.18% 33.80%
salerec Sales to receivables 0.27% 42.77%
sgr Sales growth 0.29% 40.45%
sp Sales to price 0.68% 57.18%
tang Debt capacity/firm tangibility 0.04% 3.56%
tb Tax income to book income 0.32% 55.98%
baspread Bid-ask spread 0.56% 27.84%
maxret Maximum daily return 0.35% 22.65%
retvol Return volatility 0.46% 24.70%

27

	Introduction
	Deep Factor Methodology
	Related Literature

	Deep Factor Alpha
	Deep Learning
	Fama-French model in Deep Learning

	Model Training
	Model Notation
	Deep Characteristics
	Deep Factors
	Bivariate Sorting

	Minimize Mispricing Alphas
	Model Selection

	Empirical Findings
	Data Information
	Model Selection and Forecasting

	Conclusion
	Appendix

