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Abstract 

 

This paper provides a general equilibrium approach to pricing volatility. Existing models (e.g., 

ARCH/GARCH, stochastic volatility) take a statistical approach to estimating volatility, volatility 

indices (e.g., CBOE VIX) use a weighted combination of options, and utility based models assume 

a specific type of preferences (e.g. Bansal et al., 2014; Tauchen, 2014). In contrast we treat 

volatility as any other asset and price it using the Arrow and Debreu (1954) general equilibrium 

state pricing framework. Our results show that the general equilibrium volatility method developed 

in this paper provides superior forecasting ability for realized volatility and serves as an effective 

fear gauge. We demonstrate the flexibility and generality of our approach by pricing downside risk 

and upside opportunity. Finally, we show that the superior forecasting ability of our approach 

generates significant economic value through volatility timing.  

 

Keywords: General equilibrium, volatility, state pricing, fear gauge 

Classification codes:  G12, G13, G17 
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1. Introduction 

Volatility modelling has proceeded as a field separate from asset pricing. Statistical 

models, such as ARCH (Engle 1982; Engle 2002), GARCH (Bollerslev 1986), stochastic volatility 

(Barndorff-Nielsen 2002), and option prices (Fleming et al. 1995) are commonly used to estimate 

volatility, without reference to modern asset pricing theory. In this paper, we propose to price 

volatility using a general equilibrium asset-pricing framework. The advantage of such an approach 

is that volatility can be priced and measured in the most general setting available. The approach 

also allows us to extend measurement and pricing (such as downside risk pricing and upside 

opportunity pricing), which cannot be achieved with current approaches to volatility modelling.  

This paper assumes a complete market setting where state prices are available for each time 

and state. State prices are derived from the Arrow and Debreu (1954) general equilibrium state 

pricing framework. Following Breeden and Litzenberger (1978), state prices are obtained for each 

time and state of the market that can be used to price all assets. We apply this state pricing approach 

to market volatility risk and are able to derive prices that are almost perfectly correlated with the 

CBOE Volatility Index (VIX), but are the result of a general equilibrium model. There are several 

advantages to treating volatility as any other asset and pricing it using the Arrow and Debreu 

(1954) approach. First, we treat volatility pricing the same as any other pricing exercise. Second, 

we do not have to assume a specific form of utility preferences to implement this approach. Third, 

the equilibrium price of volatility provides not only a more general approach that is very flexible 

and can also be used for individual securities, but also serves as a better predictor of future 

volatility and as an investor fear gauge.  

           Empirically, we generate market state prices from the S&P 500 index options and use them 

to price the 49 Fama and French industry volatility. The ex-ante industry volatility measure 
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constructed in this approach yields better forecasts of realized volatility than existing approaches 

and serves as a qualified investor fear gauge. We then demonstrate the flexibility and generality of 

our approach by pricing downside and upside opportunity, which complements the work of 

Bekaert and Engstrom (2017), Feunou et al. (2017), Kilic and Shaliastovich (2016) and Segal et 

al. (2015). We show that these new upside and downside volatility measures work well 

empirically. Finally, we analyze the economic value of volatility timing using the general 

equilibrium measures versus existing volatility measures. We show that the superior forecasting 

ability of our general equilibrium volatility measure has greater economic value for investors 

wishing to manage volatility. 

 Our paper is related to the recent literature on understanding volatility in a general 

equilibrium framework. As an extension of Bansal et al. (2004) and Bansal and Yaron (2004), 

Tauchen (2011) proposes a consumption-based general equilibrium model that assumes stochastic 

consumption. The model generates a two-factor structure for stock market volatility along with 

time-varying risk premiums on consumptions and volatility risk, and also the leverage effect. In 

the general equilibrium framework, Bansal et al. (2014) demonstrate that besides the cash flow 

risk and discount rate risk, volatility risk is an important and separate risk source that cannot be 

ignored. Different from this strand of literature, we impose no assumptions on consumption 

dynamics and rely only on state prices extracted from the options market. The focus of these 

existing studies is to explain the stylized facts (e.g., leverage effect, equity risk premium) in the 

market, while we aim to provide market participants with an easy and flexible tool to measure and 

manage the volatilities of asset portfolios or individual securities. 

           Our paper is also related to the prior literature on constructing volatility indices based on 

options. Britten-Jones and Neuberger (2000) use a replicating strategy to synthesize a variance 
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swap using options contracts, assuming continuity in the underlying asset price. Jiang and Tian 

(2005) build on a similar concept by incorporating a jump-diffusion stochastic volatility model. 

We adopt the general equilibrium approach and are able to construct the volatility indices for assets 

without options written on. Our paper also relates to recent efforts to disentangle the effects of 

upside and downside uncertainty on asset prices (Segal et al. 2015; Bekaert & Engstrom 2017) by 

proposing a new approach for volatility decomposition. One common approach for decomposing 

volatility into upside and downside components is to use a threshold to compute risk-neutral 

expectations of semi-variances (see e.g., Andersen and Bondarenko (2007); Feunou et al. (2017); 

Kilic and Shaliastovich (2015)). However, this approach still depends on the existence of traded 

options, while our approach does not. 

The paper is organized as follows. Section 2 outlines volatility pricing using a general 

equilibrium model. Section 3 extends our approach to price downside risk and upside opportunity. 

Section 4 analyzes the economic value of our volatility measures in a volatility timing framework. 

Section 5 concludes.  

 

2. Pricing volatility in a general equilibrium model  

 This section outlines the general equilibrium approach for pricing market volatility and 

shows how it can be extended to pricing industry volatility. Industry volatility prices are compared 

with existing approaches to forecasting realized volatility and evaluated as a gauge of investor 

fear.   

2.1 Method 
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 Under a state pricing approach, the value of any asset is the sum of the state prices 

multiplied by the payoff in each state. If, for example, we were to price the market portfolio M  

which pays off msF  in each of S  states one period (set as 30 days in this paper) from now, the price 

is given by:1 

ms

S

s

msm FP 



1

             (1) 

For an arbitrage asset i , whose payoff iF depends on the level of the market, under the complete 

market setting, its price is given by: 

Pi = jms

s=1

S

å E[Fis |Fms ]                                              (2) 

If we were to take a linear projection2 of iF  onto MF , then we would obtain: 

                                       ][
1

msii

S

s

msi FP  


or 
mirfii PP             (3) 

Since is the price of a risk-free asset with payoff of 1,  is the price of a riskless asset 

with payoff . 

 This is a relation that closely resembles the Sharpe-Lintner Capital Asset Pricing Model 

(Sharpe 1964); however, the derivation contains obvious differences. First, the market price of risk 

                                                           
1 Breeden and Litzenberger (1978) argue that the market portfolio, as a proxy for aggregate consumption, is sufficient 

to represent the different states in the economy. We show in Appendix 1 how we obtain the state prices using market 

options, where the market is represented by S&P 500 index (SPX). 
2 We could obtain this conditional expectation using more general non-linear methods as outlined in Friedman et al. 

(2001). 




S

s

ms

1

 rfi

i
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will vary over time as the state prices change. Second, the risk-free factor will be different for each 

asset i depending on the magnitude of .3 

 We now consider pricing market volatility. Here, the payoff is the squared market return 

at each state. The price of market volatility under the Arrow and Debreu (1954) approach is given 

by: 

                                
2

1

2

ms

S

s

msM RSVX 


                                            (4) 

where MSVX  is the state pricing volatility index for the market. It is the general equilibrium price 

of market volatility.  

 Compared to the calculation of the VIX, the MSVX  formula offers a more straightforward 

approach.4 To price volatility on an arbitrary asset, for example industry I, the approach above 

yields: 

   ]|[ 22

1

2

msIs

S

s

msI RRESVX 


                       (5) 

An assumption of a linear relation between individual asset return and market return (as in Eq. 3) 

would lead to a linear relation between individual asset return squared and market return squared 

conditional on the given market return, mR .  Naturally, we have: 

                                                           
3 Appendix 2 provides a more detailed discussion of the relation between state pricing theory and the CAPM. 
4 For a more detailed discussion on how to construct 

MSVX and how it performs against other volatility measures in 

predicting future market volatility, see Liu and O'Neill (2015). The approach of using Arrow-Debreu securities to 

price squared returns has also been adopted by Brennan and Cao (1996) and Cao and Ou-Yang (2008).  

i
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           ][ 2

1

2

msII

S

s

msI RSVX  


        (6) 

or  

            
22

MIrfII SVXSVX              (7) 

where rfI  is the price of a riskless asset with payoff I , 
2

MSVX   is as defined above in Eq. 4.   

 The details of the construction of ISVX are presented in Appendix 3. We see that under the 

linear projection approach, the volatility price of any asset depends on the market price of volatility 

in a straightforward manner.  

 We compare two other volatility measures to our measure. The first is an ad-hoc industry 

volatility index using the widely available CBOE volatility index VIX. To achieve that, we simply 

replace 
2

MSVX  by
2

MVIX : 

             VIXI
2 =arfI + bIVIXM

2
                                            (8) 

where MVIX is the CBOE VIX.  

 The second measure is the historical volatility, IHV , which is the realized volatility in the 

previous year. 

2.2 Data 

 To estimate state prices in the complete market setting, we obtain prices and implied 

volatilities of S&P 500 index options and S&P 500 index dividend yields from the Ivy DB US 

OptionMetrics, available through Wharton Research Data Services. The options data are available 
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on a daily basis from January 4, 1996 to April 29, 2016. Interest rates are taken from the Center 

for Research in Security Prices (CRSP) Zero Curve file. We apply a cubic spline to the interest 

rate term-structure data to match the length of the risk-free rate with the corresponding option 

maturity.  

 The 49 industry portfolios are obtained from Kenneth R. French’s Data Library.5 The daily 

return data are available from July 1927 to February 2017. However, our sample period is dictated 

by the availability of the S&P 500 options data in estimating the state prices, which are only 

available from January 4, 1996 to April 29, 2016. Given we need to estimate the betas in Eq. 7 

using a fixed two-year rolling window, we examine daily industry returns since January 1994.  

[Table 1 about here.] 

 Summary statistics of ISVX are reported in Table 1. The mean of the annualized ISVX  

varies across industries, ranging from 0.129 for the utility industry to 0.273 for the coal industry. 

Consistent with economic intuition, the “necessities” industries, such as Food, Soda, Beer, Smoke, 

and Utilities (as defined in Boudoukh et al. 1994) are insensitive to business cycles, and are the 

least volatile, on average.  

[Figure 1 about here.] 

 ISVX  for the 49 industry portfolios is illustrated in Figure 1. It is apparent that there is a 

strong positive correlation among the volatility indices. Figure 1 also reveals that there is a 

significant time variation in volatility for all industries in the analysis, showing an upward spike 

                                                           
5 We are grateful for Kenneth French for supplying this data: 

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.  

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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in the 1998 Asian Financial Crisis and during the technology bubble of the early 2000’s. A peak 

occurs around the 2008 Global Financial Crisis. 

2.3 Forecasting future 30-day realized volatility 

 The primary goal of a volatility index is to serve as a measure of the next 30-day expected 

volatility (CBOE 2009). In this section, we examine the information content of ISVX  in predicting 

subsequent 30-day realized return volatility from January 1996 to April 2016. We regress the 

future 30-day close-to-close realized volatility on different volatility measures in the following 

models: 

                   30,,,30,,   ttItIIIttI SVXRV                     (9) 

where I stands for one of the 49 industry portfolios, 30,, ttIRV denotes the annualized realized 

volatility over the next 30 days and it is defined as 
2/1

22

1

2

30,, )
30

365
(100 



 
i

ittI RRV , where 2

iR  is 

the square of the daily portfolio return. We also run this regression for IVIX  and IHV , where 

IHV  is the annualized realized volatility in the previous year. These measures are highly 

correlated on average, so we cannot include both in the same regression to determine which index 

is more statistically significant. Instead, we use the Mincer and Zarnowitz (1969) regression to 

compare the prediction performances of these three volatility measures. 

 To be an unbiased volatility predictor, we expect alphas to be not significantly different 

from 0 and betas to be not significantly different from 1. If ISVX  is a better predictor than the 
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other measures, the forecasting regression using it as the predictor is expected to generate the 

highest model explanatory power, as expressed in adjusted R-squared. 

[Table 2 about here.] 

 We run the above regressions for each of 49 industry portfolios and report the arithmetic 

average of regression results in Table 2. The covariance matrix is computed according to Newey 

and West (1994) to correct for any potential serial correlations in the error terms.  

 The mean level of the   of ISVX  is 1.01, with an average standard error of 1.5%. As 

expected,   of ISVX  is significantly different from 0 at 1% level, and not significantly different 

from 1 at any levels. In comparison,  of IVIX has a mean level of 0.918 with a standard error of 

1.4%. It is significantly different from both 0 and 1 at 1% level.   of IHV  has the lowest mean 

level out of the three measures; namely, 0.677 with a standard error of 1.5%. On average,   of 

ISVX  is 0.046, which is marginally significantly different from 0 at 5% level. The mean for  of 

IVIX  is 0.04 and is not significantly different from 0 at 5% level. In comparison, the  of IHV  

has an average value of 0.072 and is significantly different from 0. ISVX  provides higher adjusted 

R-squared than the regressions using IVIX and IHV . On average, the model with ISVX  as the 

predictor has a 1.4% higher adjusted R-squared than IVIX  and 19% higher than IHV . Therefore 

we conclude that the state price volatility index ISVX  is a more efficient forecaster of future 
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realized volatility than its counterparts. 6This industry-level result reinforces Liu and O'Neill's 

(2015) finding that state price volatility outperforms VIX and other predictors at the market level. 

2.4 Fear gauge 

 It is well-documented that there is a negative correlation between the rate of change in 

volatility (e.g., CBOE VIX) and daily market returns (see for example, Carr & Wu 2009). As 

expected market volatility increases, investors demand a higher rate of return on stocks and prices 

fall, which ultimately leads to a drop in the current market return. Therefore, we study the 

contemporaneous relation between rates of change in various industry volatility measures and 

daily industry portfolio returns. In particular, we investigate whether these indices contain any fear 

information from the market state prices. Generally, a fall in an industry portfolio usually implies 

a rally in investor fear in the segment. Therefore, we expect to see negative betas in all volatility 

measures. A fear gauge, such as CBOE VIX (Whaley 2009), should respond more to negative 

changes in portfolio returns than positive changes. We are interested in testing whether industry 

state price volatility measures can capture this asymmetric fear gauge effect. We regress the daily 

changes of various measures against industry portfolio returns in the following forms: 

tItIItIIItI RRSVX ,,,2,,1,   
   (10) 

where I stands for each of the 49 industry portfolios, ∆ measures the daily changes, and tIR , is the 

daily industry portfolio return, 


tIR , is defined as )0,min( ,tIR . 

 [Table 3 about here.] 

                                                           
6 In untabulated results, we also compare the forecasting abilities of ARCH and GARCH volatility measures with that 

of SVXI.  We find that  SVXI  outperforms these two measures in terms of adjusted R-squared. 
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 We run the above regressions for each of 49 industry portfolios and report the arithmetic 

average of regression results in Table 3. The covariance matrix is computed according to Newey 

and West (1994) to correct for any potential serial correlations in the error terms. On average, 
1

is significantly less than 0 at the 1% level, implying that there is an inverse relation between 

contemporaneous changes in volatility indices and changes in portfolio returns. 
2 is also 

significantly less than 0 at the 1% level. These results show that the response to different swings 

in portfolio returns is strongly asymmetric, and are consistent with the findings of Whaley (2009) 

and Liu and O'Neill (2015). Besides statistical significance, the coefficients are also economically 

meaningful: on average, an increase in the industry return by 100 basis would result in 51.7 basis 

decrease in ISVX  and an decrease in the industry return by 100 basis would lead to 73.8 basis 

increase in ISVX . 

3. Extensions 

 This section describes the flexibility and generality of the general equilibrium approach by 

modelling downside risk and upside opportunity. We show how these measures can be used to 

better forecast realized volatility, as well as downside risk and upside opportunity. We also 

consider how these measures can be used as an investor fear gauge.  

3.1 Downside risk and upside opportunity in a general equilibrium model  
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 In Section 2.1, we showed how to construct the industry state-price volatility index ISVX  

in a general equilibrium setting. Here, we use the general pricing approach to price downside risk 

and upside risk. 7 

Downside market risk is given by: 

           



S

s

RmsmsM ms
IRBEX

1

0

2          (11) 

where 0msRI  is an indicator variable equal to 1 if msR   is less than zero.  

Similarly upside market risk is given by: 

           



S

s

RmsmsM ms
IRBUX

1

0

2          (12) 

where 0msRI is an indicator variable equal to 1 if msR   is greater than zero.  

 Industry measures of BEX and BUX are obtained in an analogous manner to industry 

volatility ISVX  (Eq. 6) and can be represented as:  

2

,,

2

MIDownIDownI BEXBEX                             (13) 

2

,,

2

MIUpIUpI BUXBUX                                          (14) 

                                                           
7 Recent literature highlights the importance of distinguishing downside and upside volatility risk. See Patton and 

Sheppard (2015), Bekaert and Engstrom (2017), and Segal et al. (2015). 



 15 

 To estimate the alphas and betas in Eq. 13 and Eq. 14, we use a linear least squares 

regression of squared daily industry returns on squared S&P 500 market returns. Specifically, we 

are interested in the alphas and betas in the following regressions: 

  IDownMIDownIDownI RR   2

|,,

2
                                        (15) 

IUpMIUpIUpI RR   2

|,,

2
                                                     (16) 

where 2

IR is the daily squared industry return, and 2

|DownMR (
2

|UpMR ) is the market return squared 

conditional on whether the market has gone down (up) from the previous day, regardless of 

movement in the industry portfolio.8 The return is computed using the closing value at the end of 

day. We estimate each beta using a two-year fixed rolling window. That is, on the 505th day, we 

use the past two years (504 trading days) of return squared to estimate the alphas and betas in the 

above regressions.  

3.2 Industry state-price volatility that incorporates downside market volatility 

 Prior studies have shown that returns become more correlated in a bear market (e.g., Ang 

& Chen 2002; Campbell et al. 2002). As a result, we extend the basic formula for ISVX  by using 

an alternative linear projection that incorporates market downside movement: 

][)( 0

22

1

2





 msRmsImsII

S

s

ms

D

I IRRSVX                                (17) 

Which can be solved to yield: 

                                                           
8 We also considered different definitions of conditional downturn return squared for the industry portfolio. Results 

are qualitatively the same when we measure the beta of the downturn industry return and the downturn market return. 

We selected the current definition because it is more meaningful for examining how the industry portfolio responds 

and contributes to a downturn in the whole market.  
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222)( MIMIrfI

D

I BEXSVXSVX                                            (18) 

where rfI  is the price of a riskless asset with payoff I , 
2

MSVX  is as defined above in Eq. 4. and 

0msRI  is an indicator variable equal to 1 if msR  is less than zero. In this definition, the volatility 

price of any asset depends on its sensitivity to the price of market volatility and (in addition) to the 

price of market downside volatility.  

 To estimate the alphas, betas, and gammas in Eq. 18, we use a linear least square regression 

of squared daily industry returns on squared daily S&P 500 market returns. 

IDownMIDownMIDownIDownI RRR   2

|,

2

,,

2
                         (19) 

where 2

IR is the daily squared industry return, and 2

|DownMR  is the market return squared 

conditional on whether the market has gone down from the previous day, regardless of movement 

in the industry portfolio. 

3.3 Forecasting future 30-day realized volatility 

 To extend the analysis described in Section 2.3, we examine the information content of 

D

ISVX  in predicting the future 30-day realized volatility in each industry portfolio. We regress the 

future 30-day close-to-close realized volatility on different volatility measures in the following 

models: 

30,,,30,,   ttI

D

tIIIttI SVXRV                                  (20) 

[Table 4 about here.] 
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 Results are reported in Table 4 Panel A. The mean level of  of 
D

ISVX  is 1.003, with an 

average standard error of 1.5%.  of 
D

ISVX  is significantly different from 0 at 1% level, and not 

significantly different from 1 at any levels. Comparing to results in Table 2, we can see that 
D

ISVX  

outperforms other volatility candidates in terms of adjusted R-squared.  

3.4 Forecasting future 30-day realized downside volatility 

 A typical volatility measure does not describe the proportion of upside gain versus 

downside threat. In this paper, we solve this problem by introducing a downside (upside) volatility 

index IBEX ( IBUX ) for each industry portfolio as an ex-ante predictor of future downside 

(upside) volatility. It is important to note that, unlike the comparison with ISVX  and IVIX  in the 

previous section, we do not have a VIX benchmark per se because is not mathematically feasible 

to derive a downside VIX using market state prices. We regress the future 30-day close-to-close 

realized downside volatility in the following way: 

30,,

2

,30,,   ttItIIIttI BEXRVD        (21) 

where I stands for each of the 49 industry portfolios, 30,, ttIRVD denotes the realized downside 

volatility over the next 30 days and it is defined as
2/1

22

1

0

22

130,, )
30

365
(100 



 
i

RittI i
IRRVD . 

We expect alphas to be not significantly different from 0 and betas to be not significantly 

different from 1 if IBEX  is an unbiased forecaster, and betas to be significantly different from 0. 

We run the above regression for each of 49 industry portfolios and report the arithmetic average 

of regression results in Panel B in Table 4. The covariance matrix is computed according to Newey 

and West (1994) to correct for any potential serial correlations in the error terms. The mean level 
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of  of IBEX  is 0.917, with an average standard error of 1.8%.  of IBEX  is significantly 

different from 0 and 1 at 1% level. On average,  of IBEX  is 0.029 and is not significantly 

different from 0 at 5% level. The average adjusted R-squared of Eq. 21 is 34.7%. We show that 

IBEX  is an efficient forecaster of future realized downside volatility. 

3.5 Fear gauge 

 We further study the contemporaneous relation between rates of change in 
D

ISVX  and daily 

industry portfolio returns. We are interested in testing whether the modified industry volatility 

measure can better capture the fear gauge. We regress the daily changes of 
D

ISVX against the 

industry portfolio returns in the following forms: 

tItIItIII

D RRSVX
tI ,,,2,,1,

       (22) 

where I stands for each of the 49 industry portfolios, ∆ measures the daily changes, and tIR , is the 

daily industry portfolio return, 


tIR , is defined as )0,min( ,tIR . We perform a similar analysis for 

D

tI
BEX

,
  to see whether the downside volatility measure can serve as a qualified fear gauge or not. 

 [Table 5 about here.] 

 We run the above regressions for each of 49 industry portfolios and report the arithmetic 

average of regression results in Table 5. The covariance matrix is computed according to Newey 

and West (1994) to correct for any potential serial correlations in the error terms. On average, for 

both D

tI
SVX

,
 and D

tI
BEX

,
 , all 1 are significantly less than 0 at 1% level, implying there is an 

inverse relation between the contemporaneous changes of volatility indices and those of portfolio 
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returns. For both D

tI
SVX

,
  and D

tI
BEX

,
 , 2 are also significantly less than 0 at 1% level. These 

results shows that the response to different swings in portfolio returns is strongly asymmetric. This 

is consistent with findings reported in Section 2.4. By comparing the adjusted R-squared between 

Table 5 and Table 2, we can see that incorporating the downside risk into the volatility index can 

enhance monitoring effectiveness (37.9% and 37.6% for D

tI
SVX

,
  and D

tI
BEX

,
  in Table 5, and 

36.7% for 
tI

SVX
,

 in Table 2). The results confirm that measures incorporating downside risk are 

better measures of fear gauge. 

3.6 Volatility forecasting: out of sample evidence 

Besides the in-sample forecasting evidence, here we further compare the volatility predictability 

by examining the out-of-sample tests for four volatility predictors: HVI, VIXI, SVXI, and SVXD
I.  

Specifically, we use a rolling fixed window approach. Every day, each forecasting model is 

estimated with a fixed rolling window to obtain the one-month-ahead volatility forecast. To ensure 

robustness, we use a one-year window, a two-year window and a three-year window. The out-of-

sample forecasting accuracy is judged by three criteria: root-mean-square error (RMSE), mean-

absolute error (MAE) and mean-absolute-percentage error (MAPE).  

Table 6 reports the estimation results for the average values of RMSE, MAE and MAPE across 49 

industries in three different rolling windows. First, HVI   performs the worst among four volatility 

measures, regardless of criterion or rolling window. For instance, in the one-year rolling window 

case, the average RMSE values for VIXI, SVXI, and SVXD
I are all around 0.083, while it is 0.100 

for HVI.   Second, in almost all the scenarios, SVXD
I is the best predictor, with SVXI  and VIXI  

being the second and third best predictors. Overall, the out-of-sample forecasting results reiterate 

the earlier in-sample test findings.  
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4. Economic value of volatility timing 

This section investigates the economic value of using various predictors to forecast monthly 

industry volatility. First, consider an investor who allocates wealth between an industry portfolio 

and a risk-free asset using a volatility predictor to maximize utility gains. Similar to Fleming et al. 

(2001), Fleming et al. (2003), and Marquering and Verbeek (2004), we assume the investor 

maximizes the following utility based expression9:  

        ,5.0)(]),(U[E 2

1,1,

2

1,1,t   tptpttptp RER        (23) 

where )( 1, tpt RE  and 
2

1, tp  respectively are the conditional mean and variance of the portfolio 

returns, and γ refers to the coefficient of the investor’s relative risk aversion. We set γ to a realistic 

estimate of 3, as suggested by Campbell and Thompson (2008) and Rapach et al. (2016). We also 

use values of γ of 4 and 5 for robustness and sensitivity analysis. The portfolio return is

))(()( 1,1,1,1,   tftItttftpt rREwrRE , where tw  is the portfolio weight of industry portfolio I, 

)( 1, tIt RE  is the conditional expected return of the industry portfolio, and 1, tfr  denotes the risk-

free rate, which is known ex-ante. The portfolio variance is 
2

1,

22

1,   tIttp w  , where 
2

1, tI denotes 

the conditional variance of industry portfolio I. The optimal weight for industry I is given by: 

 ,
)(

2

1,

1,1,



 


tI

tftIt

t

rRE
w


   (24) 

 The current study focuses on monthly realized volatility forecasting, so we assume the 

portfolio is rebalanced monthly. We set the month t expected return as the historical mean using 

                                                           
9 Grossman (1976) and Admati (1985) show how negative exponential utility and normal distributions result in the 

above mean and variance maximization.  
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return data up to period t. The expected variance of portfolio I, 
2

1, tI , is based on the two-year 

rolling out-of-sample forecast using Eq. 11, with one of four different volatility measures (HVI, 

VIXI, SVXI, and SVXD
I) as the predictor. The accuracy of volatility forecasting determines the 

performance of this volatility timing strategy. Our benchmark strategy is the buy-and-hold strategy 

of the respective industry portfolios, I. 

 We adopt two criteria to compare the performance of different strategies. The first is the 

commonly used annualized Sharpe ratio. The second is the certainty equivalent return (CER) gain 

of a volatility timing strategy relative to that of a naïve buy-and-hold strategy: 

   .5.05.0CER 2

naivenaive

2

p   RR p            (25) 

Intuitively, the CER gains of Eq. 25 are the incremental management fees that the investor is 

willing to pay to invest in the volatility timing strategies based on the volatility forecasts over the 

buy-and-hold strategy. 

[Table 6 about here.] 

 Table 7 presents the average performance of 49 industries from January 1998 to April 2016. 

In Panel A, we assume there is no transaction cost. We first examine the basic case of γ equal to 3. 

Here, in terms of Sharpe ratio, the volatility timing strategy based on historical volatility (HVI) 

performs worse than the naïve buy-and-hold strategy (0.326 vs 0.335). However, the volatility 

timing strategies based on implied volatility series, that is, IVIX , ISVX , and
D

ISVX , generate higher 

Sharpe ratios than the buy-and-hold strategy. The highest Sharpe ratio is obtained by using 
D

ISVX  

as the volatility predictor (0.396). The results on CER gains reveal that all the volatility timing 

strategies outperform the buy-and-hold strategy. 
D

ISVX again performs best: the investor is 
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prepared to pay a hefty incremental annual management fee of 311 basis points bps) to have access 

to predictive regression based on 
D

ISVX , instead of the buy-and-hold strategy. In contrast, the 

investor is only willing to pay 249 bps for the strategy using IHV . When the investor is more risk-

averse, we find that the Sharpe ratios are similar to the basic case,10 but the management fees that 

the investor is willing to pay to be involved with the volatility timing strategy using 
D

ISVX  increase 

from 331 bps ( 3 ) to 590 bps ( 4 ) and 866 bps ( 5 ). This result suggests that volatility 

timing is especially important for risk-averse investors. 

 The volatility timing strategy requires monthly rebalancing, so its performance might be 

sensitive to transaction costs. With this in mind, we analyze the impact of transaction costs on our 

results. Following Bandi et al. (2008) and Nolte and Xu (2015), we define the transaction cost 

adjusted portfolio return as follows:  

|,|)1( 11,1,1,   ttptptp wRRR    (26) 

where 1, tpR  is the transaction cost adjusted portfolio return, 1, tpR  is the pre-adjusted portfolio 

return,   is the transaction cost parameter, and is set to be 0.0025, and 1 tw  is the change of 

weight from month t to month t+1. 

 Panel B of Table 7 presents the results for transaction cost adjusted performance. It clearly 

shows that, even when we account for transaction cost, volatility timing strategies based on IVIX

, ISVX , and
D

ISVX , still largely outperform the buy-and-hold strategy and the volatility timing 

                                                           
10 Portfolio theory confirms that a change of weights has no impact on the Sharpe ratio when allocating assets between 

a portfolio and the risk-free rate. 
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strategy based on HVI. Consistent with Panel A, 
D

ISVX  generates the highest Sharpe ratio (0.367) 

and CER gain (269 bps) for 3 , and again, economic values are larger when the investor is 

more risk-averse (CER gains of 544 bps for 4  and 829 bps for 5 ). 

 In summary, this section uses a volatility timing strategy to show that the strong forecasting 

abilities of the industry volatility indices ( IVIX , ISVX , and
D

ISVX ) have significant economic 

value for investors.  

5. Conclusion 

 This paper is novel in that it proposes a general equilibrium framework to price volatility 

in the same manner as is the case for all securities in the market, following Arrow and Debreu 

(1954). Using state prices estimated from S&P 500 index options, we illustrate how we can derive 

ex-ante volatility measures ISVX  for industry portfolios, in which there are no traded options. The 

ISVX measures generate superior forecasting abilities for the future realized volatility and serve 

as qualified fear gauges. We show that our approach is flexible and general by extending it to 

downside risk and upside opportunity. Finally, we demonstrate that the superior forecasting ability 

of our general equilibrium volatility measure can create significant economic value through a 

simple volatility timing strategy. Our findings, together with the fact that the industry volatility 

indices can be easily constructed under the general equilibrium framework, offer practitioners an 

appealing alternative tool for managing volatility. Our general equilibrium framework is not 

limited to pricing volatility, but can be applied to price any moments of the return distribution.  
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Figure 1 

SVXI for 49 Industries: 1996-2016 

 

 
This figure plots the Industry SVXI of 49 industry portfolios. The data are from 4 January 1996 to 29 April 2016. 
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TABLE 1 

Summary Statistics of Industry SVXI 

            

Industry          Obs Mean Std. Dev. Min Max 

Agric 5,099 0.150 0.103 0.039 0.950 

Food 5,099 0.132 0.051 0.052 0.482 

Soda 5,099 0.138 0.062 0.005 0.602 

Beer 5,099 0.136 0.067 0.044 0.481 

Smoke 5,099 0.143 0.066 0.049 0.645 

Toys 5,099 0.180 0.066 0.080 0.603 

Fun 5,099 0.216 0.098 0.088 0.893 

Books 5,099 0.165 0.079 0.060 0.772 

Hshld 5,099 0.145 0.060 0.059 0.534 

Clths 5,099 0.179 0.078 0.066 0.714 

Hlth 5,099 0.155 0.066 0.055 0.553 

MedEq 5,099 0.160 0.063 0.059 0.581 

Drugs 5,099 0.164 0.065 0.068 0.558 

Chems 5,099 0.188 0.083 0.091 0.818 

Rubbr 5,099 0.155 0.061 0.083 0.557 

Txtls 5,099 0.166 0.076 0.066 0.711 

BldMt 5,099 0.185 0.072 0.080 0.686 

Cnstr 5,099 0.224 0.095 0.097 1.080 

Steel 5,099 0.243 0.126 0.084 1.207 

FabPr 5,099 0.182 0.086 0.056 0.780 

Mach 5,099 0.210 0.088 0.104 0.863 

ElcEq 5,099 0.211 0.081 0.105 0.798 

Autos 5,099 0.212 0.089 0.101 0.839 

Aero 5,099 0.203 0.098 0.089 0.756 

Ships 5,099 0.168 0.073 0.073 0.784 

Guns 5,099 0.146 0.067 0.028 0.554 

Gold 5,043 0.184 0.102 0.005 0.925 

Mines 5,099 0.208 0.133 0.049 1.199 

Coal 4,735 0.273 0.154 0.007 1.363 

Oil 5,099 0.182 0.106 0.039 1.068 

Util 5,099 0.129 0.076 0.045 0.735 

Telcm 5,099 0.184 0.083 0.075 0.836 

PerSv 5,099 0.171 0.063 0.079 0.601 

BusSv 5,099 0.177 0.066 0.084 0.615 

Hardw 5,099 0.250 0.134 0.093 1.009 

Softw 5,099 0.224 0.105 0.090 0.770 

Chips 5,099 0.244 0.119 0.089 0.893 

LabEq 5,099 0.204 0.081 0.095 0.667 

Paper 5,099 0.162 0.061 0.085 0.631 

Boxes 5,099 0.171 0.069 0.072 0.678 

Trans 5,099 0.181 0.069 0.088 0.619 

Whlsl 5,099 0.156 0.059 0.078 0.605 

Rtail 5,099 0.182 0.074 0.073 0.626 

Meals 5,099 0.156 0.056 0.070 0.549 

Banks 5,099 0.229 0.114 0.083 1.494 

Insur 5,099 0.191 0.096 0.077 1.005 

RlEst 5,099 0.164 0.119 0.033 0.950 

Fin 5,099 0.263 0.132 0.094 1.331 

Other 5,099 0.179 0.088 0.060 0.669 

 
     

 

This table presents summary statistics of Industry SVXI of 49 industry portfolios. The data are from 4 January 1996 

to 29 April 2016. 
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TABLE 2 

 

Forecasting Realized Volatility with SVXI, VIXI,  and HVI 

            

Dep 

Variable: 

RVI 

Average of 

R2 

Average of 

Intercept 

Average of 

𝜷 for SVXI 

Average of 𝜷 

for VIXI 

Average of 

𝜷 for HVI 

 47.2%     

Coef  0.046** 1.010***   

p-value  0.041 1.15E-133   

Std Err  0.003 0.015   

 45.8%     

Coef  0.044*  0.918***  

p-value  0.057  3.6E-100  

Std Err  0.003  0.014  

 28.2%     

Coef  0.072***   0.677*** 

p-value  1.3E-25   9.2E-137 

Std Err   0.004     0.015 

 

This table presents the average OLS estimates of regressions in Equation (9). The regressions take the following 

general form:  

Y = α + βX + ε 

All coefficients, p-values, and standard errors are an average of the corresponding measures from 49 regressions on 

all industry portfolios. Dependent variable RVI is annualized realized volatility in future 30 days of one of 49 industry 

portfolios, where RV = 100 × (365/30 × ∑ Ri
222

i=1 )1/2 and Ri is the daily portfolio return. The data are from 4 January 

1996 to 29 April 2016. To correct for autocorrelation and heteroskedasiticity, we use the Newey-West estimator for 

covariance matric with automatically selected lags as in Newey and West (1994). ***, **, and * denote significance 

at the 0.01, 0.05, and 0.10 level, respectively.     
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TABLE 3 

Regression Results of Rate Change of SVXI Against Returns of Industry Portfolios 

     

Dep 

Variable: 

ΔSVXI 

Average of 

R2 

Average of 

Intercept 

Average 

of 𝜷𝟏 for 

RI,t 

Average 

of 𝜷𝟐 for 

RI,t
- 

 36.7%    

Coef  -0.001* -0.517*** -0.221*** 

p-value  0.051 0.000 0.001 

Std Err   0.000 0.019 0.032 

     

This table presents the average OLS estimates of regressions in Equation (10). The regressions take the following 

general form:  

∆SVXI,t = α + β1RI,t + β2RI,t
− + ε 

All coefficients, p-values, and standard errors are an average of the corresponding measures from 49 regressions on 

all industry portfolios. Independent variables include RI, daily return of the corresponding industry portfolio; and RI, 

daily return of the corresponding industry portfolio conditional on whether the return is below 0, i.e., RI- = min(RI, 

0). The dependent variable is the daily return of SVXI, where ∆SVXI,t = ln( SVXI,t/SVXI,t−1). The return data are from 

4 January 1996 to 29 April 2016. To correct for autocorrelation and heteroskedasiticity, we use the Newey-West 

estimator for covariance matric with automatically selected lags as in Newey and West (1994). ***, **, and * denote 

significance at the 0.01, 0.05, and 0.10 level, respectively.     
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TABLE 4 

Forecasting Realized Volatility and Downside Realized Volatility with SVXD
I  and BEXI 

            

  Dep 

Variable 

Average 

of R2 

Average 

of 

Intercept 

Average 

of 𝜷 for 

SVXD
I 

Average 

of 𝜷 for 

BEXI 

Panel A RVI 47.3%    

Coef   0.047** 1.003***  

p-value   0.046 1.27E-133  

Std Err     0.003 0.015   

Panel B RVD
I 34.7%    

Coef   0.029*  0.917*** 

p-value   0.058  8.3E-166 

Std Err     0.003   0.018 

      
This table presents the average OLS estimates of regressions in Sections III C and D. The regressions take the 

following general form:  

Y = α + βX + ε 

All coefficients, p-values, and standard errors are an average of the corresponding measures from 49 regressions on 

all industry portfolios. Dependent variables include; (1) RV is annualized realized volatility in future 30 days of one 

of 49 industry portfolios, where RV = 100 × (365/30 × ∑ Ri
222

i=1 )1/2  and Ri is the daily portfolio return; and (2) 

RVDI is the realized downside volatility in future 30 days of one of 49 industry portfolios, where RVD = 100 ×

(365/30 × ∑ Ri
2IRi≤0

22
i=1 )1/2. The data are from 4 January 1996 to 29 April 2016. To correct for autocorrelation and 

heteroskedasiticity, we use the Newey-West estimator for covariance matric with automatically selected lags as in 

Newey and West (1994). ***, **, and * denote significance at the 0.01, 0.05, and 0.10 level, respectively. 
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TABLE 5 

Regression Results of Rate Change of SVXD
I  and  ΔBEXI  against Returns of Industry 

Portfolios  

            

  
Dep 

Variable 

Average 

of R2 

Average 

of 

Intercept 

Average 

of 𝜷𝟏 for 

RI,t 

Average 

of 𝜷𝟐 for 

RI,t
- 

Panel A ΔSVXD
I 37.9%    

Coef   -0.001* -0.514*** -0.222*** 

p-value   0.051 0.000 0.001 

Std Err     0.000 0.019 0.031 

Panel B ΔBEXI 37.6%    

Coef   -0.001* -0.397*** -0.171*** 

p-value   0.055 0.003 0.002 

Std Err     0.000 0.015 0.025 

      

This table presents the average OLS estimates of regressions in Equation (22). The regressions take the following 

general form:  

∆SVXI,t
D = α + β1RI,t + β2RI,t

− + ε 

All coefficients, p-values, and standard errors are an average of the corresponding measures from 49 regressions on 

all industry portfolios. Independent variables include RI, daily return of the corresponding industry portfolio; and RI- 

daily return of the corresponding industry portfolio conditional on whether the return is below 0, i.e. RI = min(RI, 0). 

The dependent variable is the daily return of SVXDI, where ∆SVXI,t
D = ln( SVXI,t

D /SVXI,t
D ). The return data are from 4 

January 1996 to 29 April 2016. To correct for autocorrelation and heteroskedasiticity, we use the Newey-West 

estimator for covariance matric with automatically selected lags as in Newey and West (1994).  ***, **, and * denote 

significance at the 0.01, 0.05, and 0.10 level, respectively.     
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TABLE 6 Out-of-Sample Volatility Forecasting Results 

Panel A: 1-year rolling window 

 RMSE MAE MAPE 

HVI 0.1005 0.0665 27.8261 

VIXI 0.0838 0.0555 23.2998 

SVXI 0.0832 0.0554 23.3153 

SVXD
I 0.0832 0.0554 23.3428 

Panel B: 2-year rolling window 

 RMSE MAE MAPE 

HVI 0.1086 0.0753 32.7627 

VIXI 0.0879 0.0593 25.196 

SVXI 0.0868 0.0587 24.9739 

SVXD
I 0.0867 0.0586 24.961 

Panel C: 3-year rolling window 

 RMSE MAE MAPE 

HVI 0.1102 0.0783 35.130 

VIXI 0.0906 0.0621 26.763 

SVXI 0.0894 0.0613 26.417 

SVXD
I 0.0891 0.0611 26.370 

 

This table reports the out-of-sample forecasting results from January 1996 to April 2016 with a fixed rolling window 

approach. We report average values of RMSE, MAE and MAPE for 49 industries in the 1-year window, 2-year 

window, and 3-year window.  
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TABLE 7 

Out-of-Sample Portfolio Performance: Monthly Rebalancing 

 

Panel A: Without Transaction Cost 

 𝛾 = 3 𝛾 = 4 𝛾 = 5 

Predictor 
Sharp 

Ratio 
CER(bps) 

Sharp 

Ratio 
CER(bps) 

Sharp 

Ratio 
CER(bps) 

BH 0.335 N/A 0.335 N/A 0.335 N/A 

HVI 0.326 249 0.326 528 0.326 816 

VIXI 0.389 326 0.389 586 0.389 863 

SVXI 0.393 330 0.394 589 0.394 865 

SVXD
I 0.396 331 0.396 590 0.396 866 

Panel B:  With Transaction Cost (0.25%) 

 𝛾 = 3 𝛾 = 4 𝛾 = 5 

Predictor 
Sharp 

Ratio 
CER(bps) 

Sharp 

Ratio 
CER(bps) 

Sharp 

Ratio 
CER(bps) 

BH 0.335 N/A 0.335 N/A 0.335 N/A 

HVI 0.299 193 0.299 486 0.299 783 

VIXI 0.359 266 0.359 540 0.359 826 

SVXI 0.363 269 0.363 543 0.363 829 

SVXD
I 0.365 270 0.366 544 0.366 829 

 

This table reports the monthly out-of-sample portfolio allocation results from January 1998 to April 2016. We compare 

five strategies: buy-and-hold (BH), volatility timing based on HVI, volatility timing based on VIXI, volatility timing 

based on SVXI, and volatility timing based on SVXD
I. We report average annualized Sharpe ratio and certainty 

equivalent return (CER) gains for 49 industries under risk aversion coefficients of 3, 4, and 5. The CER gain (expressed 

in annualized basis points) is for a mean-variance investor who allocates between the industry portfolio and risk-free 

asset using the volatility timing strategy, relative to the naïve buy-and-hold passive strategy (BH). Panel A presents 

the results without transaction cost and Panel B presents the results counting for transaction cost. 
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Appendix 1: Estimation of state prices 

Breeden and Litzenberger (1978) and Banz and Miller (1978) show that state prices can be 

modelled as the second derivative of a European call option. This result comes from constructing 

a butterfly spread with a unit payoff. Assume that an investor longs one call option at a strike price 

of MMX  , one call option at MMX  , and shorts two calls at MX  . The maturity of 

these calls is T. If the market price of the underlying asset is M , the payoff of this portfolio would 

be M and zero otherwise. Henceforth, when dividing this portfolio by M , we can obtain a 

portfolio that produces a payment of $1 if the market price is M , and zero otherwise.  

The price of this portfolio is
M

MMcMcMcMMc
MTMP






)]()([)]()([
);,( . If we 

divide the price );,( MTMP   by M  and take a limit of M to zero, we can have:11 
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                                                                                                 (A1.1) 

There are two different approaches to estimate Eq A1.1: (i) the Black and Scholes (1973) risk-

neutral framework, and (ii) the model-free approach using traded option prices. As suggested by 

Breeden and Litzenberger (1978), the market portfolio is sufficient to represent different states in 

the economy. In this paper, we use the S&P 500 index (SPX) as the market portfolio. 

(i) The Black and Scholes (1973) approach 

Under the assumptions of Black and Scholes (1973), the second derivative of a European call 

option equals to: 

 
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


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                                                         (A1.2) 

                                                           
11 According to Martin (2018), the state pricing approach does not depend on whether the call option price is twice 

differentiable. Merton (1973) showed that call option prices is convex function of strike price, and by Alexandrov’s 

theorem, the second derivatives exist almost everywhere. 
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where
 

Tσ

TσKPVDF
d

2

0

2

5.0/)(ln 
  is the familiar term in Black and Scholes (1973) pricing 

formula; ϕ(.) refers to the standard normal probability density function evaluated at d2; T is the 

maturity of the option, which is set to be 30/365 in the current study; r and σ refer to the annualized 

risk-free rate and volatility12 of the SPX options; PVD is the present value of the SPX dividends; 

and K is the strike price of the SPX options (i.e., the level of the SPX at which the state price is 

required).  

         The value of the contingent claim which generates the unit payoff if the price of the 

underlying asset is greater than or equal to some level 𝐹𝑠 can be calculated as follows: 

 

𝐺(𝐹𝑠) = ∫
𝑒−𝑟𝑇𝑛(𝑑2)

𝐾𝜎√𝑇
𝑑𝐾 = 𝑒−𝑟𝑇𝑁[𝑑2(𝐾 = 𝐹𝑆)]   

∞

𝐹𝑆 
                       (A1.3) 

 

    We can then define the state price as the cost of a security with a unit payoff if the level of 

the underlying asset is between levels Fs and Fs+1, using the Eq. A1.4 below: 

 

𝜙(𝐹𝑠, 𝐹𝑠+1) = 𝑒−𝑟𝑇{𝑁[𝑑2
𝐵𝑙𝑎𝑐𝑘(𝐾 = 𝐹𝑠)] − 𝑁[𝑑2

𝐵𝑙𝑎𝑐𝑘(𝐾 = 𝐹𝑠+1)]}  (A1.4) 

 

where SPX index level 𝐹𝑠+1 >  𝐹𝑠 .   

 

In the calculation, the maximum and minimum values of state Y are bounded between 0.1 

and 9,999. A state of 2,000 indicates the SPX will be at 2,000 after one month. State prices are 

assessed in increments of 0.1 between 𝐹𝑠 and 𝐹𝑠+1, representing 0.1 index point on the SPX. 

                                                           
12 Following Yan (2011), we estimate the volatility σ as the average of the implied volatilities of two at-the-money 

calls and two at-the-money put options, each with a maturity nearest to the 30-day period. 
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(ii) The model-free approach using traded option prices 

State prices can also be estimated using the numerical derivative from traded options as: 

22
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                      (A1.5) 

 Eq. A1.5 can be directly estimated using observed SPX option prices.13 However, Liu and 

O'Neill (2015) point out several concerns regarding this approach, including generating zero state 

prices due to same deep out of the money (OTM) option prices, and negative state prices due to 

irrational bids for deep OTM options.  

 We adopt the simple Black and Scholes (1973) analytical approach as it is simpler to use 

and less subject to numerical estimation issues. Liu and O'Neill (2015) also show that the state 

prices under this approach lead to pricing results which are almost perfectly correlated with the 

model-free approach. 

 

 

 

 

 

  

                                                           
13 To more precisely estimate Eq. A1.5 in practice, we can use the Taylor series expansion to include more options 

(see e.g., Eberly 2008). 
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Appendix 2: Equilibrium price and CAPM 

The Arrow and Debreu (1954) approach states that the value of the market is: 

ms

S

s

msm FP 



1

                                                     (A2.1) 

where tmsF  is the payoff on the market in state s  and mP  is the current value of the market. 

Using the set of state prices on the market ms , we can now find the value of any asset. We simply 

find the expected value of asset i  conditional on the level of the market )|( mi FFE , and multiply 

by the market state prices to obtain: 

]|[
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msis
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s

msi FFEP 


                                         (A2.2) 

The common way to project this expectation is the linear projection of miimi FFFE  )|( , 

which yields: 

][
1

msii

S

s

msi FP  


                                        (A2.3) 

Now Eq. A2.3 looks very familiar and it closely resembles the CAPM in payoffs. However, it is 

different from CAPM because: 

1. The state prices ms  depend on the volatility of the market, the level of the market, the risk-free 

rate, and the usual determinants of option value. Therefore the state prices could change 

continuously yet the CAPM assumes constant coefficients. 
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2. The conditional value of asset i , )|( mi FFE  (Eq. A2.3) may not be linear in mF . There are all 

sorts of non-linear ways of taking this conditional expectation (e.g., the excellent test of Friedman 

et al. (2001)), but the CAPM only implies a linear projection with constant intercept and slope 

coefficients. 
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Appendix 3: Construction method of industry volatility 

 We begin our construction by estimating a state-price volatility index for the whole market. 

This process is similar to the methodology described in Liu and O'Neill (2015). As the first step, 

we estimate the price of a security that pays off a dollar amount of  log
M s

M0

æ

è
ç

ö

ø
÷

2

if the S&P 500 index 

moves to state M s  from an initial value of M0  in 30 days’ time.14 When summing across all 

possible future states, we arrive at the price of this asset in the following form: 

SVXM =
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jms log
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2

s=1

S

å                                                               (A3.1) 

where  𝑇 is set to be exactly 30 calendar days (or equivalently, 22 trading days). 𝑆𝑉𝑋𝑀
2  can be 

viewed as a financial asset that pays off a dollar amount that is equivalent to the fair value of future 

variance. The factor 365/30 is to obtain an annualized volatility figure.  

 The second step involves estimating the relationship between each industry portfolio and 

the market portfolio, using a linear projection on the market model. That is, we are interested in 

the expected payoff for the industry conditional on the level of the index. The industry payoff here 

is the expected squared log returns  22 | MI RRE . There are many ways to estimate this relationship 

(see e.g.,Friedman et al. 2001). Linear projection is the most common method in the extant 

literature (Smith & Walsh 2013), so we adopt this approach and use a simple linear least squares 

regression of daily squared industry returns on the squared S&P 500 market returns. In this setting, 

we use the market state prices and assume complete markets. The method captures the systematic 

                                                           
14 A common approach is to use price levels (returns) to represent the market states (Ross 2015). 
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components of industry volatility to the extent that the coefficient is allowed to vary over time. 

Specifically, we are interested in the alphas and betas in the following regression: 

IMIII RR   22                                          (A3.2) 

The return IR  is computed using the close value at the end of day. We estimate each beta using a 

two-year fixed rolling window. That is, on 505th day, we use the past two years (504 trading days) 

of return squared to estimate the beta in the above regressions.  

The third step is to work out the individual industry portfolio volatility index based on the 

estimated alphas and betas and their corresponding volatility asset. To illustrate this, we substitute 

Eq. A3.2 into Eq. A3.1: 
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                        (A3.3)                    

The last step is to create an ad-hoc industry volatility index using the widely available CBOE 

volatility index VIX. VIX is a sum of weighted-average out-of-the-money S&P 500 put and call 

options. For a detailed discussion on VIX, we refer to Whaley (2009). As we do not have traded 

options for the industry portfolios, we cannot replicate the CBOE VIX methodology to reproduce 

the industry measures. Our ad-hoc estimation takes the following form by replacing
2

MSVX  with 

2

MVIX :  


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                                  (A3.4)                    

where MVIX is the CBOE VIX. 


